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Motivation
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ML trends: deeper & larger DNN models
From AlexNet to ResNet

[AlexNet*]

* Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS-2012

7 convolutional layers
(2012)
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ML trends: deeper & larger DNN models
From AlexNet to ResNet

[ResNet*]

* He et al., “Deep Residual Learning for Image Recognition”, CVPR-2016

153 convolutional layers
(2016)
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Memory “capacity” limits in DNN training
Training large & deep DNNs incurs large memory allocations

— The Next Platform, “Baidu eyes deep learning strategy in wake of new GPU options”, April 26th 2016
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Prior solution: virtualized DNN (vDNN)
Expose both CPU and GPU memory for allocating DNN training data

CPU memory GPU memory

CPU
PCIe

GPU

* Rhu et al.,“vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016   
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Prior solution: virtualized DNN (vDNN)
Expose both CPU and GPU memory for allocating DNN training data

CPU memory GPU memory

CPU
PCIe

GPU
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* Rhu et al.,“vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016
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Prior solution: virtualized DNN (vDNN)
Expose both CPU and GPU memory for allocating DNN training data

CPU memory GPU memory

CPU
PCIe

GPU

Migrate back to GPU memory

* Rhu et al.,“vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016
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Large Model Support (LMS) with PowerAI
Expose both CPU and GPU memory for allocating DNN training data

* https://developer.ibm.com/linuxonpower/2017/09/22/realizing-value-large-model-support-lms-powerai-ibm-caffe/



10(C) Minsoo Rhu

HPC system node for deep learning
Multiple GPUs (4 to 8) connected under a PCIe root complex 

QuickPath Interconnect (QPI)

High capacity, low bandwidth memory (DDR4)

Low capacity, high bandwidth stacked memory (HBM)

Big Data

Deeper & wider neural networks
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HPC system node for deep learning
Multiple GPUs (4 to 8) connected under a PCIe root complex 

QuickPath Interconnect (QPI)

High capacity, low bandwidth memory (DDR4)
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Big Data
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HPC system node for deep learning
Multiple GPUs (4 to 8) connected under a PCIe root complex 

QuickPath Interconnect (QPI)

High capacity, low bandwidth memory (DDR4)

Low capacity, high bandwidth stacked memory (HBM)

Big Data

Deeper & wider neural networks

Challenges: PCIe channel bandwidth becomes a performance bottleneck!

GPU-CPU
migration traffic

GPU-CPU
migration traffic
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Opportunity: “sparse” data structures
Amplify effective PCIe bandwidth via compressing CPU-migrated data

CPU memory GPU memory

CPU
PCIe

GPU

Spill to CPU memory
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Opportunity: “sparse” data structures
Amplify effective PCIe bandwidth via compressing CPU-migrated data

0 0 0 c0

0 0 0 da

0 b 0 00

0 0 0 00
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Key contributions of this work

Application characterization study on sparsity
when training convolutional neural networks

Architectural support for leveraging
activation sparsity in virtualized DNNs
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Q. How much sparsity do DNNs exhibit 
during training?
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Case study) AlexNet
Characterizing the changes in layer density during training

[AlexNet*]

* Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS-2012
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Case study) AlexNet
Characterizing the changes in layer density during training

* Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS-2012

Test 
image

[AlexNet*]
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Case study) AlexNet
Characterizing the changes in layer density during training

conv0
(96,	55,	55)

Trained
(0%)

Trained
(20%)

Trained
(40%)

Trained
(60%)

Trained
(80%)

Trained
(100%)55

55

96

Feature maps

Test 
image



20(C) Minsoo Rhu

Case study) AlexNet
Characterizing the changes in layer density during training
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Case study) AlexNet
Characterizing the changes in layer density during training

conv0
(96,	55,	55)

(55x55) 
2D image

Trained
(0%)

Trained
(20%)

Trained
(40%)

Trained
(60%)

Trained
(80%)

Trained
(100%)

96 channels

55

55
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Feature maps

Test 
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Case study) AlexNet
Characterizing the changes in layer density during training

conv0
(96,	55,	55)

Trained
(0%)

Trained
(20%)

Trained
(40%)

Trained
(60%)

Trained
(80%)

Trained
(100%)

Average layer density: 49%
(51% of activations are 0-valued)
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Case study) AlexNet
Characterizing the changes in layer density during training

conv0
(96,	55,	55)

Trained
(0%)

Trained
(20%)

Trained
(40%)

Trained
(60%)

Trained
(80%)

Trained
(100%)

Test 
image

Average layer density: 49%
(51% of activations are 0-valued)
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Case study) AlexNet
Characterizing the changes in layer density during training

Trained
(0%)

Trained
(20%)

Trained
(40%)

Trained
(60%)

Trained
(80%)

Trained
(100%)

conv1
(256,	27,	27)

Average layer density: 36%
(64% of activations are 0-valued)
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Case study) AlexNet
Characterizing the changes in layer density during training

Trained
(0%)

Trained
(20%)

Trained
(40%)

Trained
(60%)

Trained
(80%)

Trained
(100%)

conv4
(256,	13,	13)

Average layer density: 22%
(78% of activations are 0-valued)
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Case study) AlexNet
Putting everything together

Time 
(0% to 100%)
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Case study) AlexNet
Putting everything together

Time 
(0% to 100%)
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Case study) AlexNet
Putting everything together

Observation #1: First CONV layer consistently exhibits around 50% layer density
across the entire training process.
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Case study) AlexNet
Putting everything together

Observation #2: Pooling layers always increase overall activation density.
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Case study) AlexNet
Putting everything together

Observation #3: Within each layer, activation density rapidly decreases during the 
initial training periods; once training period reaches the fine-tuning stage, density 
gradually crawls back up again.
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Case study) AlexNet
Putting everything together

Observation #4: Later layers are generally more sparser than earlier layers
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Case study) VGG-16
Putting everything together

Deeper

Sparser
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What causes such behavior in DNNs?
Discussed much more in our paper J
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What causes such behavior in DNNs?
Observation#4: Sparsity increases as you go deep inside the network

Deeper

Sparser
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What causes such behavior in DNNs?
Observation#4: Sparsity increases as you go deep inside the network

* Zeiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013

ActivationsInput images
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What causes such behavior in DNNs?
Observation#4: Sparsity increases as you go deep inside the network

* Zeiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013

ActivationsInput images

First few layers: filters are trained 
to respond to “class-invariant”
features
- Corners
- Edges
- Colors
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What causes such behavior in DNNs?
Observation#4: Sparsity increases as you go deep inside the network

* Zeiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013

Input images Activations
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What causes such behavior in DNNs?
Observation#4: Sparsity increases as you go deep inside the network

* Zeiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013

Input images Activations
Deeper layers: more “class-specific” features

(e.g., Textures …)
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What causes such behavior in DNNs?
Observation#4: Sparsity increases as you go deep inside the network

* Zeiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013

Input images Activations
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What causes such behavior in DNNs?
Observation#4: Sparsity increases as you go deep inside the network

* Zeiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013

Input images Activations
For “deep” neural networks, there exists significant 

sparsity in activations (40% ~ 90% layer-wise sparsity) 
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Compressing DMA Engine
(cDMA)
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Baseline CPU-GPU system interconnect
Max. 16 GB/sec communication channel between CPU-GPU

16	GB/s

PCIe
CPU	MC

CPU	DRAM

GPU	DRAM

DMA
Engine

GPU

Crossbar

SM SM SM SM SM SM

CPU

336	GB/s

MC
L2

MC
L2

MC
L2

MC
L2

MC
L2

MC
L2
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Compressing DMA architecture
Goals: Saturate PCIe channel with compressed activation maps

16	GB/s

PCIe
CPU	MC

CPU	DRAM

GPU	DRAM
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Crossbar
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CPU

336	GB/s
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L2
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L2

Compressed data

Q. How should the memory subsystem interact with the DMA engine?
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Compressing DMA architecture
DRAM read-BW should be high enough to generate compressed data

16	GB/s
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: DRAM read throughput >= (compression rate x PCIe bandwidth)

Compressed data
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Compressing DMA architecture
Challenges: GPU crossbar bandwidth should be amplified proportionally

16	GB/s

PCIe
CPU	MC

CPU	DRAM

GPU	DRAM

DMA
Engine

GPU

Crossbar

SM SM SM SM SM SM

CPU

336	GB/s

MC
L2

MC
L2

MC
L2

MC
L2

MC
L2

MC
L2

: DRAM read throughput >= (compression rate x PCIe bandwidth)

Compressed data
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Compressing DMA architecture
Solution: Compress data “before” routing it through the crossbar

16	GB/s

PCIe
CPU	MC
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GPU	DRAM

cDMA
Engine

GPU

Crossbar

SM SM SM SM SM SM

CPU

336	GB/s

C
MC
L2 C

MC
L2 C

MC
L2 C

MC
L2 C

MC
L2C

MC
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B

C : Compression unit B : Buffer to aggregate compressed data from all MCs
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Compressing DMA architecture
Solution: Compress data “before” routing it through the crossbar
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Compression algorithms
Compression algorithms

1. Run-length encoding 

+ Simple to implement, well-suited for high-throughput compression

-- Compression rate is good only when zero-values are clustered

2. Zlib compression

+ Exhibits good compression rate for a variety of data patterns

-- Designing high-throughput compression hardware is challenging

e.g., Dedicated ASIC/FPGA solutions provide roughly 2.5 GB/sec data
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Proposed compression algorithm
Frequent-value compression (encoding sparseness)

has 
zeros

a b c d e f g hData i j k l m n o p

Metadata

Data

0

has 
zeros

a b c d e f g h i j k l m n o p

< Uncompressed >

< Compressed >
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Proposed compression algorithm
Frequent-value compression (encoding sparseness)

0 0 a 0 0 b 0 0Data c d e 0 0 0 0 f

0 0 1 0 0 1 0 0Metadata
(bitmask)

1 1 1 0 0 0 0 1

a b c d e fData

N elements

< Uncompressed >

1

has 
zeros

< Compressed >

N bits



52(C) Minsoo Rhu

Compression microarchitecture
Frequent-value compression (encoding sparseness)

≠	0? ≠	0? ≠	0? ≠	0? ≠	0? ≠	0? ≠	0?≠	0?

Prefix	Sum

Bubble-collapsing	Shifter

10011010

100110104

Shift-And-Append
+
0

10011010

Shift-And-Append

Buffer	Length	Reg.

Mask	Segment

Mask

Compressed	128B	Buffer

Input	Data	(32B	x	4)

<Area overhead>
- FreePDK + CACTI
- 1.5 mm2 in 28 nm process
- (Note) GV100 size: 800 mm2
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Results
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Evaluation
Methodology

Application characterization & datasets

Model: trained from scratch using Caffe

Activations: collected at training time, which are fed into the compression module
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Evaluation
Methodology

Application characterization & datasets

Model: trained from scratch using Caffe

Activations: collected at training time, which are fed into the compression module

Performance evaluation (hybrid approach) 

Real GPU: 

measured using vDNN* with CPU-migrated data properly compressed

Analytical model: 

penalize performance when cDMA’s DRAM bandwidth pressure is high
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Evaluation

Application characterization & datasets

Model: trained from scratch using Caffe

Activations: collected at training time, which are fed into the compression module

Performance evaluation (hybrid approach) 

Real GPU: 

measured using vDNN* with CPU-migrated data properly compressed

Analytical model: 

penalize performance when cDMA’s DRAM bandwidth pressure is high

Methodology

* Rhu et al.,“vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016   
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Avg/Max compression rate
Higher is better
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Avg/Max compression rate
Higher is better
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: different compression algorithm
è RL (run-length encoding), ZV (zero-value compression), and ZL (Zlib compression)
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CPU-GPU data traffic size
Lower is better
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Performance
Higher is better
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Conclusions

Compressing DMA engine:
Architectural support for sparse CNN training

Avg 2.6x (max 13.8x) compression rate

Avg 53% (max 79%) speedup on Pascal Titan Xp
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Backup
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Training vs. inference
Deep learning for image classification
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Training vs. inference
Deep learning for image classification

: DNN model is fixed 
(so, activations stay constant for the same input sets)
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Training vs. inference
Deep learning for image classification

: DNN model gets constantly updated during the course of training
(so, activation map values also changes accordingly …)

: DNN model is fixed 
(so, activations stay constant for the same input sets)
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Case study) AlexNet
Characterizing the changes in layer density during training

Trained
(0%)

Trained
(20%)

Trained
(40%)

Trained
(60%)

Trained
(80%)

Trained
(100%)

fc1
(4096,	1,	1)

Average layer density: 31%
(69% of activations are 0-valued)


