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Motivation



ML trends: deeper & larger DNN models

From AlexNet to ResNet
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* Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS-2012



ML trends: deeper & larger DNN models

From AlexNet to ResNet
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* He et al., "Deep Residual Learning for Image Recognition”, CVPR-2016



Memory “capacity” limits in DNN training

Training large & deep DNNs incurs large memory allocations

Medium
W Sneed CS231n Convolutional Neural Networks for Visual Recognition
In-Depth Al Technology & Industry Review www.syncedreview.com | www jigizhixin.com
. Apr 29 - 7 min read Computational Considerations

HOW to Train a Very Large and Deep MOdeI The largest bottleneck to be aware of when constructing ConvNet architectures is the memory bottleneck. Many

modern GPUs have a limit of 3/4/6GB memory, with the best GPUs having about 12GB of memory. There are three

on One GPU? major sources of memory to keep track of:

Problem: GPU memory limitation

OPBLTS POPULAR  BUSINESS TECHNO

HOW TO SOLVE THE MEMORY CHALLENGES OF DEEP
NEURAL NETWORKS

Posted by Jamie Hanlon | Mar 30, 2017



Prior solution: virtualized DNN (vDNN)
Expose both CPU and GPU memory for allocating DNN training data

CPU memory

* Rhu et al.,"vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016



Prior solution: virtualized DNN (vDNN)
Expose both CPU and GPU memory for allocating DNN training data

Spill to CPU memory

CPU memory

* Rhu et al.,"vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016



Prior solution: virtualized DNN (vDNN)
Expose both CPU and GPU memory for allocating DNN training data

%

Migrate back to GPU memory

CPU memory

* Rhu et al.,"vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016



Large Model Support (LMS) with PowerAl
Expose both CPU and GPU memory for allocating DNN training data

Realizing the value of Large Model Support (LMS) with PowerAI IBM Caffe

g SarithaVinod O in ¥ &« @
&

IBM PowerAlI 4.0 has been released with Large Model Support (LMS) in IBM Caffe. LMS uses system memory in conjunction with GPU memory to overcome GPU memory limitations in Deep

Learning Training.

LMS enables processing of high definition images, large models, and higher batch sizes that doesn’t fit in GPU memory today (Maximum GPU memory available in Nvidia P100 GPUs is 16GB).

LMS Options
® - Ims <size in KB>>
® - Ims_frac <x>, where 0<x<1.0

You can enable the large model support in IBM Caffe by adding -1ms <size in KB>>. This acts as a threshold size that decides which memory allocations will happen on CPU memory or on

GPU memory.

For example -1ms 1000. With this option, any memory chunk allocation larger than 2000KB will be done in CPU memory, and fetched to GPU memory only when needed for computation. Thus,
if you use a very large value like -1ms 10000000000, it will effectively disable the feature while a small value means a more aggressive LMS. The value is used to control the performance trade-

off. Apparently bringing in more data from the CPU memory will incur as overhead in runtime.

As a secondary option, there is -1ms_frac <x>, where 0<x<1.0. For example, with -Ims_frac 0.5 LMS doesn’t kick in until more than at least 50% of GPU memory is expected to be utilized.

This is useful for disabling LMS for a small network or to use the GPU memory efficiently for larger networks.

* https://developer.ibm.com/linuxonpower/2017/09/22/realizing-value-large-model-support-lms-powerai-ibm-caffe/
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HPC system node for deep learning

Multiple GPUs (4 to 8) connected under a PCIe root complex

High capacity, low bandwidth memory (DDR4)

Deeper & wider neural networks

Low capacity, high bandwidth stacked memory (HBM)
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HPC system node for deep learning

Multiple GPUs (4 to 8) connected under a PCIe root complex

High capacity, low bandwidth memory (DDR4)

GPU-CPU
migration traffic

Deeper & wider neural networks

Low capacity, high bandwidth stacked memory (HBM)
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HPC system node for deep learning

Multiple GPUs (4 to 8) connected under a PCIe root complex

7igh capacity, low bandwidth memory (DD
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Low capacity, high bandwidth stacked memory (HBM)

Challenges: PCle channel bandwidth becomes a performance bottleneck!



Opportunity: “sparse” data structures
Amplify effective PCle bandwidth via compressing CPU-migrated data
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Opportunity: "sparse” data structures
Amplify effective PCle bandwidth via compressing CPU-migrated data
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Key contributions of this work

Application characterization study on sparsity
when training convolutional neural networks

Architectural support for leveraging
activation sparsity in virtualized DNNs



Q. How much sparsity do DNNs exhibit
during training?



Case study) AlexNet

Characterizing the changes in layer density during training
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Case study) AlexNet

Characterizing the changes in layer density during training
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Case study) AlexNet

Characterizing the changes in layer density during training
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Case study) AlexNet

Characterizing the changes in layer density during training
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Case study) AlexNet

Characterizing the changes in layer density during training

(55x55)
2D image
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Case study) AlexNet

Characterizing the changes in layer density during training

conv0
(96, 55, 55)

Trained
(0%)
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Case study) AlexNet

Characterizing the changes in layer density during training

conv0
(96, 55, 55)
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Case study) AlexNet

Characterizing the changes in layer density during training

conv0
(96, 55, 55)

Trained Trained Trained Trained Trained Trained
(0%) (20%) (40%) (60%) (80%) (100%)

Average layer density: 49%
(51% of activations are 0-valued)




25

Case study) AlexNet

Characterizing the changes in layer density during training

convl
(256, 27, 27)

Trained Trained Trained Trained Trained Trained
(0%) (20%) (40%) (60%) (80%) (100%)

Average layer density: 36%
(64% of activations are 0-valued)
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Case study) AlexNet

Characterizing the changes in layer density during training

conv4
(256, 13, 13)

Trained Trained Trained Trained Trained Trained
(0%) (20%) (40%) (60%) (80%) (100%)

Average layer density: 22%
(78% of activations are 0-valued)



Case study) AlexNet

Putting everything together
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Case study) AlexNet

Putting everything together

Activation density
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Case study) AlexNet

Putting everything together
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Observation #1: First CONV layer consistently exhibits around 50% layer density
across the entire training process.
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Case study) AlexNet

Putting everything together
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Observation #2: Pooling layers always increase overall activation density.
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Case study) AlexNet

Putting everything together
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Observation #3: Within each layer, activation density rapidly decreases during the
initial training periods; once training period reaches the fine-tuning stage, density

gradually crawls back up again.
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Case study) AlexNet

Putting everything together
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Observation #4: Later layers are generally more sparser than earlier layers
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Case study) VGG-16

Putting everything together
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What causes such behavior in DNNs?

Discussed much more in our paper ©
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What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network
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What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network

Input images Activations

* Leiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013
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What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network

First few layers: filters are trained
to respond to “class-invariant”
features

- Corners

- Edges

- Colors

Input images Activations

* Leiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013



What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network

Input images Activations

* Zeiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013
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What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network

Deeper layers: more “class-specific” features
(e.g., Textures ...)

* Zeiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013
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What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network

Input images Activations

* Zeiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013
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What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network

For “deep” neural networks, there exists significant
sparsity in activations (40% ~ 90% layer-wise sparsity)

* Zeiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013
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Compressing DMA Engine
(cDMA)



Baseline CPU-GPU system interconnect

Max. 16 GB/sec communication channel between CPU-GPU
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Compressing DMA architecture

Goals: Saturate PCIe channel with compressed activation maps

GPU CPU

DMA PCle
SM SM SM  SM SM  SM Engine | [€———>
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Q. How should the memory subsystem interact with the DMA engine?



Compressing DMA architecture
DRAM read-BW should be high enough to generate compressed data

GPU CPU
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Dl e e e e e Il 336 GB/s

» : DRAM read throughput >= (compression rate x PCle bandwidth)




Compressing DMA architecture
Challenges: GPU crossbar bandwidth should be amplified proportionally

GPU CPU
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Dl e e e e e Il 336 GB/s

» : DRAM read throughput >= (compression rate x PCle bandwidth)




Compressing DMA architecture

Solution: Compress data “before” routing it through the crossbar

GPU CPU
cDMA
Engine PCle
SM SM SM SM SM SM B «—>
16 GB/s | | CPU MC
Crossbar i
q. BE .| CPU DRAM
l \GPU DRAM
Dl e e e e e e Il 336 GB/s

C : Compression unit B : Buffer to aggregate compressed data from all MCs



Compressing DMA architecture

Solution: Compress data “before” routing it through the crossbar

GPU CPU
PCle

16 GB/s CPU MC

q....| CPU DRAM

i ; 4 . | p1iGPU DRAM
Dl e e e e e e Il 336 GB/s

C : Compression unit B : Buffer to aggregate compressed data from all MCs
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Compression algorithms

Compression algorithms

1. Run-length encoding
+ Simple to implement, well-suited for high-throughput compression

-- Compression rate is good only when zero-values are clustered

2. Zlib compression
+ Exhibits good compression rate for a variety of data patterns
-- Designing high-throughput compression hardware is challenging

e.g., Dedicated ASIC/FPGA solutions provide roughly 2.5 GB/sec data



Proposed compression algorithm

Frequent-value compression (encoding sparseness)

< Uncompressed >

S 2 b c dle flg hlilj klIIm/nlolp

< Compressed >

S 2 b c d el flglhlilj kI Imln olp

Metadata n
1

has
Zeros

50



Proposed compression algorithm

Frequent-value compression (encoding sparseness)

< Uncompressed >
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Compression microarchitecture

Frequent-value compression (encoding sparseness)
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Results



Evaluation
Methodology

Application characterization & datasets
Model: trained from scratch using Caffe

Activations: collected at training time, which are fed into the compression module
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Evaluation
Methodology

Application characterization & datasets

Model: trained from scratch using Caffe
Activations: collected at training time, which are fed into the compression module

Performance evaluation (hybrid approach)

Real GPU:

Analytical model:
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Evaluation
Methodology

Application characterization & datasets

Model: trained from scratch using Caffe
Activations: collected at training time, which are fed into the compression module

Performance evaluation (hybrid approach)
Real GPU:
measured using vVDNN* with CPU-migrated data properly compressed
Analytical model:

penalize performance when cDMA’s DRAM bandwidth pressure is high

* Rhu et al.,"vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016
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Compressionratio
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Avg/Max compression rate
Higher is better
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Compressionratio
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Avg/Max compression rate
Higher is better

16

0\\0/0 M avg (network) <©-max (layer)
O——0 oo o~ _ o
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RL | 2V | ZL AV v | ZL v | ZL v | ZL 2V | 7L
AlexNet OverFeat NiN VGG SqueezeNet GoogleNet

: different compression algorithm
= RL (run-length encoding), ZV (zero-value compression), and ZL (Zlib compression)



CPU-GPU data traffic size

Lower is better

Offload size

(normalized)
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Performance
Higher is better
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- different compression algorithm
= RL (run-length encoding), ZV (zero-value compression), and ZL (Zlib compression)



Compressing DMA engine:
Architectural support for sparse CNN training

Avg 2.6x (max 13.8x) compression rate

Avg 53% (max 79%) speedup on Pascal Titan Xp



Backup



Training vs. inference

Deep learning for image classification

forward “car”
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Training vs. inference

Deep learning for image classification

forward “car”

backward error

”

“car

/Smaller,
varied N

INFERENCE ' : DNN model is fixed
(so, activations stay constant for the same input sets)



Training vs. inference

Deep learning for image classification

forward “car”
R |
?

!

backward error

TRAINING : DNN model gets constantly updated during the course of training
(so, activation map values also changes accordingly ...)

Smaller,
varied N

INFERENCE ' : DNN model is fixed
(so, activations stay constant for the same input sets)
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Case study) AlexNet

Characterizing the changes in layer density during training
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Average layer density: 31%
(69% of activations are 0-valued)



