
Transparent O�loading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh‡ Eiman Ebrahimi† Gwangsun Kim∗ Niladrish Chatterjee† Mike O’Connor†

Nandita Vijaykumar‡ Onur Mutlu§‡ Stephen W. Keckler†
‡Carnegie Mellon University †NVIDIA ∗KAIST §ETH Zürich

ABSTRACT
Main memory bandwidth is a critical bottleneck for modern GPU
systems due to limited o�-chip pin bandwidth. 3D-stacked mem-
ory architectures provide a promising opportunity to signi�cantly
alleviate this bottleneck by directly connecting a logic layer to the
DRAM layers with high bandwidth connections. Recent work has
shown promising potential performance bene�ts from an architec-
ture that connects multiple such 3D-stacked memories and o�oads
bandwidth-intensive computations to a GPU in each of the logic
layers. An unsolved key challenge in such a system is how to enable
computation o�oading and data mapping to multiple 3D-stacked
memories without burdening the programmer such that any applica-
tion can transparently bene�t from near-data processing capabilities
in the logic layer.

Our paper develops two new mechanisms to address this key chal-
lenge. First, a compiler-based technique that automatically identi�es
code to o�oad to a logic-layer GPU based on a simple cost-bene�t
analysis. Second, a software/hardware cooperative mechanism that
predicts which memory pages will be accessed by o�oaded code,
and places those pages in the memory stack closest to the o�oaded
code, to minimize o�-chip bandwidth consumption. We call the com-
bination of these two programmer-transparent mechanisms TOM:
Transparent O�oading and Mapping.

Our extensive evaluations across a variety of modern memory-
intensive GPU workloads show that, without requiring any program
modi�cation, TOM signi�cantly improves performance (by 30% on
average, and up to 76%) compared to a baseline GPU system that
cannot o�oad computation to 3D-stacked memories.

1. Introduction
Main memory bandwidth is a well-known critical bottleneck
for many GPU applications [21, 44, 56]. Emerging 3D-stacked
memory technologies o�er new opportunities to alleviate this
bottleneck by enabling very wide, energy-e�cient interfaces
to the processor [29, 30]. In addition, a logic layer within a
3D memory stack provides the opportunity to place process-
ing elements close to the data in memory to further improve
bandwidth and reduce power consumption [12, 26, 59]. In
these near-data processing (NDP) systems, through-silicon
vias (TSVs) from the memory dies can provide greater band-
width to the processing units on the logic layer within the
stack, while simultaneously removing the need for energy-
consuming and long-distance data movement between chips.

Recent work demonstrates promising performance and
energy e�ciency bene�ts from using near-data processing in
GPU systems [55, 60]. Figure 1 shows a high level diagram of
an example near-data processing system architecture. This
system consists of 1) multiple 3D-stacked memories, called
memory stacks, each of which has one or more streaming
multiprocessors (SMs) on its logic layer, and 2) the main GPU
with multiple SMs. O�oading computation to the logic layer

3D-stacked memory
(memory stack)

Main GPU

Off-chip cross-stack link

Off-chip GPU-to-memory link

DRAM layers

Logic layer

Main GPU SMs

Logic layer 
SM

Crossbar switch
Vault 
Ctrl

…. Vault 
Ctrl

Figure 1: Overview of an NDP GPU system.

SMs reduces data tra�c between the memory stacks and
the main GPU, alleviating the o�-chip memory bandwidth
bottleneck and reducing power consumption of the power-
hungry o�-chip memory bus. Unfortunately, there are two
key challenges in such NDP systems that need to be solved
to e�ectively exploit the bene�ts of near data processing.
To solve these challenges, prior works required signi�cant
programmer e�ort [2, 55, 60], which we aim to eliminate in
this work.
Challenge 1. Which operations should be executed on the

SMs in the main GPU versus the SMs in the memory stack? In-
structions must be steered to the compute units they most e�-
ciently execute on. For example, memory-intensive blocks of
instructions could bene�t from executing at the logic layer of
memory stacks that hold the data they access, while compute-
intensive portions could bene�t from remaining on the main
GPU. Although programmers may have such knowledge, it
would be a large burden for them to designate the most appro-
priate execution engine for all parts of the program, which
may change dynamically due to program phase behavior and
di�erent input sets.
Challenge 2. How should data be mapped to di�erent 3D

memory stacks? In a system with multiple memory stacks,
such as the one in Figure 1, an application’s data is spread
across multiple memory stacks to maximize bandwidth uti-
lization of the main GPU. However, the e�ciency of an NDP
operation primarily depends on whether the data accessed by
the o�oaded operation is located within the same memory
stack. We thus need to map data in a way that: 1) maximizes
the code/data co-location for NDP operations, and 2) max-
imizes bandwidth utilization for the code executing on the
main GPU. Doing so is challenging because di�erent code
blocks and di�erent threads in a program access di�erent
parts of data structures at di�erent times during program
execution. Determining which part of memory is accessed by
which code block instances is di�cult, and requiring the pro-
grammer to do this places a large burden on the programmer.

Our goal is to solve both challenges transparently to the
programmer. To this end, we develop two new mechanisms,
the combination of which we refer to as TOM (Transpar-



ent O�oading and Mapping). To solve Challenge 1, we
propose an o�oad candidate selection mechanism that can
be implemented as a static compiler analysis pass requiring
no programmer intervention. The key idea is to statically
identify code blocks with maximum potential memory band-
width savings from o�oading to the near-data compute units.
The bandwidth savings obtained with compute o�oading
is a function of the memory intensity of the o�oaded code
and the bandwidth spent to transfer live-in/live-out regis-
ters to/from code being executed on the logic layer. Our
mechanism statically estimates memory bandwidth savings
of di�erent instruction code blocks to identify the best candi-
dates to o�oad to NDP compute units in the logic layer of 3D
memory stacks (Section 3.1). Our system then dynamically
decides whether or not to actually o�oad the selected code
blocks (Section 3.3), based on dynamic system conditions
such as SM and bandwidth utilization.

To solve Challenge 2, we propose a programmer-transparent
data mapping mechanism that places data in the same mem-
ory stack as that of the o�oaded code that accesses it. This
mechanism is based on the key observation that a signi�cant
fraction (85% in our experiments) of o�oaded code blocks
exhibit repeatable memory access patterns. We leverage this
repeatability in access patterns to perform simple changes to
physical memory mapping to place o�oaded code and the
data it accesses in the same memory stack. Our mechanism
uses the main GPU to evaluate di�erent simple memory map-
ping options at run time. It then predicts memory pages that
the o�oaded code block will access, �nds the mapping that
would keep that data closest to the code that will access it,
and maps the predicted pages using the identi�ed best map-
ping while mapping all other pages using the mapping that
favors the main GPU.
Contributions. We make the following contributions:

• We propose a new compiler-based mechanism to select
instructions to o�oad to near-data compute units, without
requiring any programmer intervention. Our mechanism
identi�es the best candidate code blocks for o�oading by
statically estimating the potential memory bandwidth sav-
ings for di�erent code blocks. We propose a new runtime
mechanism that decides whether or not the selected in-
structions should be o�oaded based on system conditions.

• We propose a new programmer-transparent data mapping
mechanism to co-locate o�oaded code and data in the
same memory stack by exploiting predictability in memory
access patterns in o�oaded code blocks. Our mechanism
retains the memory mapping for all other data to maximize
memory bandwidth of code executing on the main GPU.

• We comprehensively evaluate the combination of our two
mechanisms, collectively called TOM (Transparent O�oad-
ing and Mapping), using 10 memory-intensive general-
purpose GPU applications across a variety of system con�g-
urations. We show that TOM, on average, improves system
performance by 30% (up to 76%), reduces o�-chip memory
tra�c by 38% (up to 99%), and reduces energy consumption
by 11% (up to 37%), over a baseline GPU system that cannot
o�oad computation to 3D-stacked memories.

2. Motivation

The �rst challenge for NDP systems is deciding which code
to o�oad. Most prior research on near-data processing re-
quires the programmer to identify and specify which code
will be run close to memory [2, 14, 55] and can ignore the
memory intensity of the code [60]. These approaches lead
to increased programmer e�ort, or suboptimal performance
by executing some compute-intensive code on the 3D-stack
logic layer. In contrast, our approach identi�es the candidate
code blocks for o�oading via static compile-time analysis
that maximizes memory bandwidth savings. Figure 2 shows
the ideal performance improvement of our proposed o�oad
candidate identi�cation mechanism (described in detail in
Section 3.1). With an idealized system where there is no over-
head for o�oading code blocks and where all o�oaded code
and data are co-located, our static approach has the potential
to improve performance by 1.58× on average (up to 2.19×)
across a range of 10 memory intensive GPGPU workloads.

0.0
0.5
1.0
1.5
2.0
2.5

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Sp
ee
du
p

Figure 2: Ideal speedup with near-data processing.

A second challenge is co-locating the o�oaded compu-
tation with its data, while at the same time not degrading
performance of the non-o�oaded code due to potentially
increased memory stack contention. This is a problem that
static compiler analysis inherently cannot solve. The map-
ping of memory to di�erent stacks is determined by several
dynamic components, e.g., the host-side driver, GPU runtime,
memory controller, etc. Most prior NDP proposals introduce
intrusive program changes such as low level APIs or program
annotations to address the data mapping problem [55, 60].
Such approaches make the bene�t of NDP available only to
those willing and able to re-write their programs, unlike the
programmer-transparent approach we propose in this pa-
per. Figure 3 shows how an ideal mapping, which simply
uses the best two consecutive address bits to map memory
pages to memory stacks, can improve the performance of
an NDP system.1 The graph shows that such a simple ideal
address mapping of data to memory stacks, which maximizes
o�oaded code/data co-location, improves performance by
13% on average compared to a state-of-the-art GPU memory
mapping policy [9]. These two motivating studies illustrate
that there are signi�cant gains that can be achieved by devel-
oping intelligent code o�oading and data mapping strategies.

0.0

0.5

1.0

1.5

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Sp
ee
du
p

Figure 3: E�ect of ideal memory mapping on near-data pro-
cessing performance.

1Section 5 describes our evaluation methodology.



3. Mechanism
We describe our new mechanisms to enable programmer-
transparent near-data processing in GPU systems. Our pro-
posal, Transparent O�oading and Mapping (TOM), consists
of two key components. The �rst is a compiler-based tech-
nique to identify candidate code blocks for o�oading based
on cost-bene�t analysis of memory bandwidth (Section 3.1).
The second component is a software/hardware cooperative
mechanism that maps memory pages accessed by o�oaded
code to where the code will execute, by exploiting common
memory access patterns (Section 3.2). After describing these
two key components separately, we describe a runtime mech-
anism that dynamically determines whether an o�oading
candidate block should really be o�oaded (Section 3.3).
3.1. Identi�cation of O�loading Candidates
The objective when identifying candidate instruction blocks
for o�oading is to improve performance by reducing the
main GPU’s memory bandwidth consumption. The key to
this identi�cation is determining whether o�oading a block
saves more memory bandwidth during o�oaded execution than
it costs in additional data transfers to initiate and complete the
o�oad. Memory bandwidth savings come from executing
o�oaded loads/stores in the memory stack. The overhead of
o�oading is due to transferring the context required by the
block to execute in memory, and returning execution results
to the main GPU. This section details the process.
3.1.1. Estimating the memory bandwidth cost-bene�t.
As Figure 1 shows, the main GPU and the memory stacks are
connected by unidirectional high speed links similar to the
Hybrid Memory Cube (HMC) architecture [34]. Load instruc-
tions send addresses through the transmit channels (TX, from
the GPU to the memory stack), and receive data back on the
receive channels (RX, from the memory stack to the GPU).
Store instructions send store addresses and data through the
TX channels, and get the acknowledgment messages back
from the RX channels. Without loss of generality, we assume
the size of address, data, and registers is 4× the size of an
acknowledgment message. If loads and stores are executed
independently for each thread, we can estimate the change
in bandwidth consumption caused by o�oading a block as:

BWT X = REGT X − (NLD + 2 ·NST ) (1)
BWRX = REGRX − (NLD + 1/4 ·NST ) (2)

REGT X and REGRX are the number of registers trans-
mitted and received from the memory stacks respectively.
These represent the bandwidth cost of o�oading the block.
The bandwidth bene�t of o�oading is based on the number
of loads, NLD , and stores, NST , executed in the block.

Equation (1) is derived assuming each load transmits an
address, and each store transmits both its address and data
through the TX channel. Similarly, Equation (2) is derived
by assuming each load gets its data and each store gets its
acknowledgment message back on the RX channel.

In a GPU, threads are executed in lock-step warps, so it
is straightforward for the hardware to o�oad code block
instances at the granularity of a warp as opposed to the gran-
ularity of a single thread. O�oading at warp granularity

makes Equations (1) and (2) overly simplistic because, in real-
ity, loads and stores are coalesced by the load-store unit and
caches. Furthermore, for loads, the sizes of address and data
are di�erent because data is fetched at cache line granularity.
To address these issues, we estimate the bandwidth change
at warp granularity as follows:

BWT X = (REGT X ·SW )−
(NLD ·CoalLD ·MissLD + NST · (SW + CoalST )) (3)

BWRX = (REGRX ·SW )−
(NLD ·CoalLD ·SC ·MissLD + 1/4 ·NST ·CoalST ) (4)

In Equations (3) and (4), SW is the size of a warp (e.g. 32)
and SC is the ratio of the cache line size to the address size
(e.g. 32 for 128B cache lines and 4B addresses). CoalLD

and CoalST are the average coalescing ratios for loads and
stores respectively. For example, if all loads in a warp can be
coalesced into two cache line accesses on average, CoalLD

is 2. Also, MissLD is the cache miss rate for loads and is
accounted for as a co-e�cient for the number of loads, NLD ,
when calculating the bandwidth bene�t of o�oading.

We propose identifying o�oad candidate blocks with static
compile time analysis since determining instruction depen-
dencies (i.e., REGT X and REGRX values) at run time would
introduce high hardware complexity. The compiler can easily
determine these terms as they are needed for register allo-
cation and instruction scheduling. However, the compiler
does not statically know coalescing ratios (CoalLD , CoalST )
or cache miss rates (MissLD). We use a conservative esti-
mate for these values so that the identi�ed candidate blocks
are most likely bene�cial. As such, we assume all memory
instructions in a warp are perfectly coalesced so both coalesc-
ing ratios are 1. Since GPU cache miss rates are usually high,
we choose an estimate of 50% for MissLD , close to the GPU
cache miss rates reported by prior works on a wide range of
workloads [1, 45].2
3.1.2. O�loading candidate block identi�cation. The
compiler identi�es an instruction block as a potential o�oad-
ing candidate if the total estimated change in bandwidth
as a result of o�oading (BWT X + BWRX of Equations (3)
and (4)) is negative. This means the bene�ts of o�oading that
candidate outweigh the costs and thus o�oading is expected
to save overall memory bandwidth. The compiler tags each
candidate with a 2-bit value indicating whether o�oading
it is estimated to save RX bandwidth and/or TX bandwidth.
Section 4.2 describes how the hardware uses this informa-
tion to dynamically determine whether or not the candidate
should be actually o�oaded.
3.1.3. Loops and conditional o�loading candidates. In
candidate blocks that encapsulate a loop structure, the loop’s
execution count is a multiplier into the number of loads/stores
for the block’s bandwidth change calculation. While the
overhead of o�oading a loop is constant and is proportional
to the number of live-in registers required by the block and

2While using more aggressive values identi�es more o�oading candi-
dates, we do not observe clear performance bene�ts in our experiments.
This is because not all aggressively-chosen o�oading candidates result in
memory bandwidth savings.



the number of registers the block calculates values for, the
bene�t is determined by the number of executed iterations.

There are three cases for the compiler to handle a loop.
First, if the loop trip count can be determined statically, the
compiler uses it to determine whether or not it is an o�oading
candidate. Second, if the loop trip count can be determined
before entering the loop at runtime, the compiler marks the
corresponding loop as a “conditional o�oading candidate”.
The compiler then provides the condition as a hint to the hard-
ware. Using this hint, hardware decides whether or not to
o�oad the candidate at runtime. For example, the condition
of o�oading can be a certain register’s value (e.g., the loop
count) being greater than some threshold. Hardware o�oads
these conditional o�oading candidates only when the con-
dition holds true. Third, if the loop trip count is determined
during execution, the compiler conservatively assumes the
count to be one and makes the o�oading decision based on
the loop body. If o�oading the loop body is bene�cial, the
loop is marked as an unconditional o�oading candidate.

3.1.4. O�loading candidate block limitations. We im-
pose three limitations on candidate blocks. First, there should
not be any on-chip shared memory accesses within a can-
didate block, as the compute units in memory stacks can-
not access the main GPU’s shared memory without going
through the o�-chip link. Second, if the candidate code
involves divergent threads, they must converge at the end
of o�oaded execution. Since the GPU uses a SIMT execu-
tion model, threads in a warp may diverge at control �ow
instructions. Allowing control �ow divergence after the exe-
cution of an o�oaded block can signi�cantly complicate the
management of the control divergence/reconvergence stack
(e.g., by requiring it to be distributed across the main GPU
and the memory stacks). As such, to make sure the threads
in a warp converge at the end of an o�oaded block’s execu-
tion, the compiler makes sure the destinations of all control
�ow instructions are still con�ned within the candidate block.
Third, we do not allow memory barrier, synchronization, or
atomic instructions in candidate blocks as we do not support
synchronization primitives between the main GPU and the
logic layer SM. Section 4.4.2 describes the details.

3.1.5. O�loading candidate block examples. Figure 4
shows the example o�oading candidate blocks in a sample
GPU workload: LIBOR Monte Carlo [6,18]. In this code, there
are two loops that are conditional o�oading candidate blocks.
Each loop has �ve input values (REGT X , marked as red), one
load, and one store (both circled). If the compiler does not take
into account loops, it would not select these two loops as of-
�oading candidates with our conservative estimate for cache
miss rate and coalescing ratios (BWT X +BWRX = +110.25
with 50% cache miss rate and perfect load/store coalescing).
However, by considering loops as described in Section 3.1.3,
these two loops become conditional o�oading candidates.
With the same conservative assumptions, this loop would
save memory bandwidth if it iterates four or more times as
it executes more loads and stores (BWT X + BWRX = −39
when it iterates four times).

float portfolio_b (float ∗L, float ∗L_b) {
int m, n; float b, s, swapval, v; 
... 
for (n = 0; n < Nmat; n++)

L_b[n] = −v ∗ delta /(1.0 + delta ∗ L[n]); 

for (n = Nmat; n < N; n++) 
L_b[n] = b ∗ L_b[n]; 

return v; 

Figure 4: Example o�loading candidate blocks from LIBOR
Monte Carlo [6,18].

3.2. Programmer-transparent Data Mapping
The goal of programmer-transparent data mapping is to im-
prove code/data co-location in a simple fashion. We �rst
analyze the candidate block’s memory access traces to �nd
opportunities towards this goal. Based on our �ndings, we
propose a new automatic mechanism to �nd an e�ective data
mapping.
3.2.1. Memory access pattern analysis.We observe that a
signi�cant fraction of o�oading candidates exhibit a very pre-
dictable access pattern: �xed o�set, which means accesses are
separated with a constant address o�set/distance from each
other. Such accesses are predictable and can be used to map
memory chunks with that o�set onto the same stack. Fur-
thermore, when the o�set between accesses has a factor that
is a power of two, some least signi�cant bits in the accessed
addresses are always the same. Therefore, we can ensure
all accesses go to the same memory stack if we use only the
least signi�cant N bits to determine the stack mapping. For
example, the �rst loop in Figure 4 accesses two arrays with
the same index, and their o�set is solely determined by the
distance between the arrays’ base addresses. As memory is
allocated at a page granularity, which is a power of two value,
this distance usually has a factor that is a power of two.

To understand how often such an access pattern happens,
we categorize o�oading candidates (chosen by the mecha-
nisms described in Section 3.1) based on the percentage of
�xed-o�set memory accesses. Figure 5 shows the results. We
make two observations based on the results.

0%

20%

40%

60%

80%

100%

BP BFS KM CFD HW LIB RAY FWT SP RD AVGPe
rc

en
t o

f o
ff

lo
ad

in
g 

ca
nd

id
at

e b
lo

ck
s

All accesses fixed offset 75%-99% fixed offset 50%-75% fixed offset
25%-50% fixed offset 0%-25% fixed offset No access fixed offset

Figure 5: Analysis of accessed memory address o�sets in of-
�oading candidates.

First, 85% of all o�oading candidates in the GPU workloads
we studied have some memory accesses with �xed o�set that
can be used to improve data locality. Second, six workloads
have o�oading candidates that always access memory with
a �xed o�set. This means we can �nd a simple mapping for
these workloads that would keep a large portion of accesses
within the same stack as o�oaded blocks.

We take advantage of these observations by using consec-
utive bits in the memory address to determine memory stack



address mapping. We avoid choosing bits from the cache line
o�set to ensure o�-chip link e�ciency and main memory
row bu�er locality are not reduced. Assuming �xed o�set
addresses have a common factor of 2M and the cache line size
is 2N , our best bit position choices for mapping to di�erent
memory stacks are among bits [M − 1 : N ].

To demonstrate the e�ectiveness of using consecutive ad-
dress bits for mapping addresses to memory stacks, we sweep
all consecutive 2-bit mappings3 in a system with 4 memory
stacks and compare the compute/data co-location of the best
2-bit mapping with the baseline GPU mapping [9]. As we
o�oad each candidate block at the granularity of a warp,
an o�oading candidate instance is a warp that executes an
o�oading candidate block. We de�ne the compute/data co-
location as the probability of accessing one memory stack in
an o�oading candidate instance. Higher probability indicates
higher compute/data co-location. Our evaluation shows that
using the best consecutive bit position choice, the probability
of accessing one memory stack from an o�oading candidate
instance goes up from 38% (with baseline data mapping) to
75% on average (almost a 2× improvement). This shows the
e�ectiveness of using a simple memory mapping mechanism
to increase the compute/data co-location to maximize the
bene�ts of NDP.
3.2.2. Predictability of the best memory mapping. Ad-
justing memory mapping after data has been placed in GPU
memory and during kernel execution can involve high over-
head in moving data between stacks and could easily elim-
inate the bene�ts of NDP. To address this, we propose a
mechanism to predict the best memory mapping before data
is placed in memory.

We �nd that we can predict the best memory mapping
by observing a small number of initial o�oading candidate
instances’ memory behavior. Figure 6 shows how close we
can get by making a choice on the memory mapping to use
by observing only the �rst 0.1%, 0.5%, and 1% o�oading can-
didate instances. The �gure shows that the mapping chosen
after observing only 0.1% of o�oading candidate instances
achieves a probability of accessing one memory stack of 72%,
which is only 3% less than that obtained with oracle knowl-
edge. This is intuitive because most GPU programs access
memory based on the index of threads and thread blocks,
which makes access patterns very predictable and consistent
among threads [38]. We conclude that we can predict a simple
memory stack physical address mapping that signi�cantly
improves code/data co-location by observing a small number
of initial o�oading candidate instances.
3.2.3. Programmer-transparent data mapping.Based on
Section 3.2.2, we propose a software/hardware cooperative
mechanism to improve compute/data locality automatically,
which we call programmer-transparent data mapping.
The key idea is to learn the best memory mapping by observ-
ing a small number of initial o�oading candidate instances,

3We only need 2 bits to determine the memory stack in a system with 4
memory stacks. The result of the sweep starts from bit position 7 (128B GPU
cache line size) to bit position 16 (64 KB). Based on our results, sweeping
into higher bits does not make a noticeable di�erence.

0%

20%

40%

60%

80%

100%

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Pr
ob

ab
ili

ty
 o

f a
cc

es
si

ng
 o

ne
 

m
em

or
y 

st
ac

k 
in

 a
n 

of
flo

ad
in

g 
ca

nd
id

at
e 

in
st

an
ce

Baseline mapping Best mapping in first 0.1% NDP blocks
Best mapping in first 0.5% NDP blocks Best mapping in first 1% NDP blocks
Best mapping in all NDP blocks

Figure 6: E�ectiveness of the best memory mapping chosen
from di�erent fraction of o�loading candidate instances.

and apply this mapping only to the data that o�oading can-
didate blocks access.

With our mechanism, GPU kernel execution is split into
a relatively short initial learning phase followed by regular
execution. During the learning phase, all GPU kernels run
on the main SMs and the corresponding data resides in the
CPU memory while the mechanism learns the best memory
mapping for data accessed by o�oading candidates. After
the learning phase is over, before regular execution com-
mences, we copy data accessed by o�oading candidates from
the CPU memory to the GPU memory based on the learned
best memory mapping. Our mechanism essentially delays the
memory copy from the CPU to the GPU in the typical GPU
execution �ow so there is no extra data remapping overhead.
During regular execution, o�oaded code runs on memory
stack SMs while the data it accesses is mapped using the
best mapping discovered in the learning phase. As we apply
the best mapping only to the data accessed by the o�oad-
ing candidates, all the other data is still mapped with the
sophisticated memory mapping scheme typically used by
GPUs [9], which maximizes memory bandwidth for the code
the main GPU executes. Section 4.3 describes the detailed
�ow of programmer-transparent data mapping.
3.3. Dynamic O�loading Aggressiveness Control
Aggressively o�oading candidates determined by the com-
piler to memory stacks may make the system slower in two
scenarios. First, memory stack SMs could become new per-
formance bottlenecks if the number of o�oading requests is
more than what they can handle. As each SM has a limit on
concurrent warps running on it, the SMs in memory stacks
cannot spawn new warps for an o�oaded block after the num-
ber of concurrent warps reaches the hardware limit. When
this happens, SMs in the main GPU would be waiting for the
o�oaded blocks to complete, but these o�oaded blocks would
not be making progress as they are waiting to be spawned.
Second, there could be a discrepancy in the bandwidth sav-
ings of the RX and TX o�-chip links. O�oading a block may
save signi�cant bandwidth in the RX channel, but introduce
additional tra�c in the TX channel. If the TX channel is the
performance bottleneck for an application, o�oading such a
block will exacerbate the problem.

To address the above cases, we propose dynamic o�load-
ing aggressiveness control, which uses run-time informa-
tion to make the �nal decision on whether or not each can-
didate should be o�oaded. Our dynamic o�oading control
mechanism may override the compiler’s o�oading recom-
mendation in two ways. First, the GPU keeps track of the
number of pending o�oading requests sent to each mem-
ory stack, and stops further o�oading when that number



reaches the number of warps that can concurrently execute
on the corresponding memory stack SM. Doing so prevents
the over-o�oading situation described above. Second, the
GPU monitors the bandwidth utilization of both TX and RX
channels, and does not o�oad blocks that would introduce
more tra�c to a channel that is already above some threshold
utilization rate. As described in Section 3.1, the compiler tags
each o�oading candidate block with a 2-bit value to indicate
its bandwidth savings in the TX and RX channels. The hard-
ware uses this information to make o�oading decisions at
run time.

4. Implementation
In this section, we describe the implementation details of
our proposal, TOM. We �rst introduce the hardware compo-
nents added by our proposal (Section 4.1). We then provide
detailed design of the NDP o�oading (Section 4.2) and the
programmer-transparent data mapping (Section 4.3) mecha-
nisms. Finally, we discuss how we handle two important de-
sign considerations, virtual address translation (Section 4.4.1)
and cache coherence (Section 4.4.2).
4.1. Hardware Block Diagram
Figure 7 presents the high level block diagram that shows
how our proposals for NDP o�oading �t within a typical
GPU pipeline [20, 37]. We add three new components to sup-
port our mechanisms: (1) an O�oad Controller to make �nal
o�oading decisions, (2) a Channel Busy Monitor to monitor
the utilization of the o�-chip channels, and (3) a Memory
Map Analyzer to support programmer-transparent data map-
ping, as described in Section 4.3. We brie�y describe each
component and explain how it �ts into the NDP o�oading
event �ow.

Fetch/
I-Cache/
Decode

Scoreboard

Instruction 
Buffer

Offload 
Controller

Issue

SIMT Stack
Active
Mask

Operand 
Collector

ALU

MEM

Data 
Cache

Memory Port / 
MSHR

Channel Busy 
Monitor

Memory Map 
Analyzer

Offload 
ACK

Offload Request

❶

❷

❺ ❻

Shared
Mem

❼

❹

❸

Figure 7: Block diagram of the NDP hardware and its inter-
actions with the GPU pipeline.

O�load Controller (¶). The O�oad Controller works
with the main GPU pipeline to provide three functions. First,
it determines whether a candidate block should be o�oaded
based on runtime information. This runtime decision involves
handling of conditional o�oading candidates (Section 3.1.3)
and dynamic o�oading aggressiveness control (Section 3.3).
Second, it packs the o�oading information and sends it to
the memory stack SMs. Third, it resumes the o�oaded warp
when it receives the corresponding acknowledgment packet
from memory stack SMs.
Channel Busy Monitor (·). The Channel Busy Monitor

tracks the utilization of o�-chip TX/RX channels. When the

utilization rate of a channel reaches a pre-de�ned threshold,
it reports the channel as busy to the O�oad Controller (¶).
MemoryMapAnalyzer (¸). The Memory Map Analyzer

is set up by the GPU Runtime to provide the number of mem-
ory stacks accessed by each o�oading candidate instance for
all di�erent potential stack mappings. This unit is enabled
only during the learning phase of programmer-transparent
data mapping, as we describe further in Section 4.3.
4.2. Design of NDP O�loading
Interface between the compiler and the hardware. The
compiler provides information about o�oading candidates to
the hardware in two ways. First, we introduce a new instruc-
tion in the ISA that is used by the compiler to indicate the
beginning of an o�oading candidate block to the hardware.
Second, the compiler provides an o�loading metadata ta-
ble in the program to the hardware. Each entry in this table
is associated with an o�oading candidate, and provides the
begin/end PC addresses, live-in/live-out registers, 2-bit tags
to indicate the TX/RX channel savings (Section 3.1.2), and the
condition for conditional o�oading candidates (Section 3.1.3).
This table is allocated by the compiler and placed in on-chip
Shared Memory (¹).
O�loading candidate block detection. In the pipeline,

each instruction is decoded and placed into the Instruction
Bu�er (º). When the Instruction Bu�er detects the instruc-
tion as the beginning of an o�oading candidate block, it
marks this warp as not ready, and consults the O�oad Con-
troller (¶) for an o�oading decision. The O�oad Controller
fetches its o�oading metadata from Shared Memory (¹), and
uses it to make an o�oading decision.
Dynamic o�loading decision. The dynamic o�oading

decision consists of three steps: (1) The O�oad Controller
checks whether the condition for o�oading is true for a con-
ditional o�oading candidate. It does so by getting the corre-
sponding register value from the Operand Collector (») and
performing the value comparison based on the corresponding
condition (Section 3.1.3). (2) If one of the TX/RX channels
is signaled as busy by the Channel Busy Monitor (·) and
the 2-bit tag for this block indicates that it would introduce
more memory tra�c to a busy channel, the O�oad Controller
does not o�oad it. (3) The O�oad Controller determines the
o�oading destination based on the memory stack that will be
accessed by the �rst instruction of the block.4 It then checks
whether the number of pending o�oading requests to that
memory stack have reached the warp limit of the memory
stack SM, and, if so, skips o�oading (Section 3.3). Note that
the pipeline can schedule and execute other warps while
waiting for the o�oading decision.

Sending o�loading requests. After the decision is made,
the warp that is waiting for the o�oading decision becomes

4If the �rst instruction of the o�oading candidate is not a memory in-
struction, the O�oad Controller saves the live-registers and asks the pipeline
to execute until the �rst memory instruction. When the �rst memory in-
struction is encountered and the destination stack is determined, o�oading
actually happens and the o�oaded block restarts execution from the be-
ginning of the block on the appropriate memory stack SM. The redundant
execution at the main GPU does not a�ect the program state because we
update the live-out registers only after o�oading completes.



ready. The Issue unit (¼) issues the instructions into the
pipeline as usual if the decision is not to o�oad the block.
Otherwise, it sends the instruction to the O�oad Controller.
The O�oad Controller packs live-in registers, begin/end PCs,
and active masks as an o�oading request and sends it to the
memory stack. In our evaluation, we assume the pipeline
latency of o�oading a task is 10 cycles. This latency is small
compared to the at least 200 cycle latency of each memory
access within an o�oaded block, which contains many such
memory accesses. The GPU pipeline can execute other warps
while waiting for the o�oaded tasks.

Receiving o�load acknowledgment. When an of-
�oaded block completes its execution on the memory stack,
the memory stack SM sends an o�oad acknowledgment
packet to the main GPU, which includes live-out registers
and the cache lines that need to be invalidated (Section 4.4.2).
The O�oad Controller (¶) requests cache invalidations and
register updates, and then restarts the corresponding warp
from the next instruction of the end of the block on the GPU.
4.3. Design of Programmer-transparent Data

Mapping
Our programmer-transparent data mapping is a soft-
ware/hardware cooperative mechanism to choose and ap-
ply the best memory mapping for compute/data co-location
based on the access pattern of a small number of initial of-
�oading candidate instances (Section 3.2.1). In hardware, we
add a memory mapping analyzer in the GPU (¸ in Fig-
ure 7). In software, we modify the GPU host-side driver
that runs on the CPU and the GPU runtime that runs on the
GPU. Existing applications can bene�t from our programmer-
transparent data mapping without any program modi�cation.

This mechanism consists of the following steps:
1. Before launching a GPU kernel, a GPU application needs

to allocate memory through the GPU driver on the CPU, and
copy corresponding locations from the CPU memory into the
GPU memory. With programmer-transparent data mapping,
the GPU driver still allocates memory in the GPU virtual
memory space5, but delays the copy by initially mapping the
GPU virtual memory to CPU memory During the initial learn-
ing phase, the GPU driver records each memory allocation in
a memory allocation table6 for further reference.

2. When the application requests a GPU kernel launch,
the GPU driver uses the GPU runtime to set up the memory
mapping analyzer (¸ in Figure 7) based on two tables: the
memory allocation table from Step 1 and the o�loading
metadata table from the compiler (Section 4.2). The GPU
driver then launches the kernel as usual. Since the GPU
virtual memory has been allocated in CPU memory, during
the relatively short initial learning phase, the GPU accesses
the memory through the GPU-to-CPU link (i.e., PCI-E). As
we describe in Section 5, our experimental setup faithfully
accounts for this extra latency during the learning phase.

3. The memory mapping analyzer monitors the execution
of GPU threads and their memory accesses. By doing so, it
calculates how many memory stacks would be accessed by

5Section 4.4.1 provides the details of the virtual address translation.
6Section 6.6 provides the details of the memory allocation table.

each o�oading candidate instance for all di�erent potential
stack mappings (e.g., using bits 7:8, 8:9, ..., 16:17 in a system
with four memory stacks). Separately, for each application-
allocated memory range (Step 1) that has been accessed by
an o�oading candidate, the analyzer sets a bit in the memory
allocation table to indicate that this range should apply the
memory mapping that favors o�oaded blocks.

4. When the memory mapping analyzer has seen the pre-
determined number of o�oading candidate instances (e.g.,
0.1% of all instances) , it issues an interrupt to the GPU run-
time. The GPU runtime stops execution on all SMs in the
GPU and uses the data recorded by the mapping analyzer to
determine the best memory mapping. This is the mapping
that leads to the most accesses to the stack that the o�oaded
block would execute on.

5. Finally, the GPU runtime requests the GPU driver on the
CPU to perform the memory copy. In the baseline, this would
have happened before the kernel launch. In our proposal,
however, the GPU driver copies the memory ranges that
have been accessed by an o�oading candidate block into the
GPU memory, using the best found mapping in the learning
phase. Other memory ranges are copied over using the default
mapping that favors the code running on the main GPU.
Subsequently, regular execution resumes on the GPU.
4.4. Design Considerations
There are two considerations that are important to the e�-
ciency and correctness of NDP o�oading: 1) virtual address
translation in memory stacks, and 2) cache coherence be-
tween the SMs in the main GPU and the SMs in the memory
stacks. We address these here.
4.4.1. Virtual address translation. The GPU application
works with virtual addresses that are translated to physical
addresses using a hardware TLB and an MMU that accesses
page tables in memory. We assume memory stack SMs are
equipped with similar TLBs and MMUs and are capable of
performing virtual address translation. According to our
evaluation, the size of the MMU and TLB per SM is fairly
small: 1-2K �ip-�ops and small amount of logic. This accounts
for less than 2% of the area of a memory stack SM.

Providing this capability to the memory stack SMs can pose
two challenges: First, the page table needed for address trans-
lation may not be located in the same memory stack as the
requesting SM. Such accesses would utilize cross-stack links
used for remote data access already present in our architec-
ture (as shown in Figure 1 and described further in Section 5).
Second, if the GPU SMs were to update the page table, a TLB
shootdown may be needed to maintain the correctness of
address translation. However, we o�oad candidate blocks
only after we complete the memory copy and the page table
update. Since we set up all page tables before o�oading, there
is no need for memory stack TLB shootdowns.
4.4.2. Cache coherence. Both the SMs in the GPU and the
SMs in the memory stacks have caches to exploit locality
and coalesce memory accesses. As blocks get o�oaded to
memory stack SMs, and data is cached on the SMs in addition
to the main GPU caches, correctness issues may occur if stale
data is accessed incorrectly. For example, an SM in a memory



stack may execute an o�oaded block and update some values
in memory. Subsequently, if the GPU SMs read stale data
from their caches, they will not obtain the most up-to-date
data. Therefore, we make sure GPU SMs and memory stacks
SMs always observe the most up-to-date values.

A naive solution would be to provide cache coherence be-
tween the main GPU’s caches and memory stack SM caches.
However, extending the traditional cache coherence proto-
cols to the number of caches involved is di�cult, potentially
requiring large state and interconnect bandwidth [22,24]. The
corresponding coherence tra�c would need to go through o�-
chip links between the GPU and the memory stacks, and can
consume more bandwidth than what is reduced by o�oading.

In our NDP architecture, when the main GPU SM requests
o�oading of a block, the memory stacks essentially execute
some instructions on behalf of the requesting main GPU SM.
Since these are the only SMs that execute instructions from
the same Cooperative Thread Array (CTA), without loss of
generality, we focus on their cache coherence here. In the
GPU programming model, there is no ordering or consis-
tency guarantee between threads in di�erent CTAs. Each
CTA is bound to a speci�c SM, and there is no cache coher-
ence requirement across SMs. Additionally, programmers
are required to explicitly use memory barriers or thread syn-
chronization instructions to ensure memory access ordering
across threads within a CTA [38].

We guarantee the cache correctness of o�oaded execution
in three steps. First, the requesting SM in the GPU pushes all
memory update tra�c from itself to memory before issuing
the o�oading request. This is not di�cult because most GPUs
employ write through caches [53]. Second, the memory stack
SM invalidates its private cache before spawning a new warp
for the o�oaded block. These two steps guarantee that the
memory stack SM observes the most up-to-date data from the
requester SM. Third, the memory stack SM records the cache
line addresses that have been updated by this o�oaded block,
and sends these addresses back to the requester SM when the
o�oaded block exits. The requester SM then invalidates these
cache lines in the GPU and subsequently obtains the latest
data from memory, if necessary7. According to our evaluation,
the average performance overhead of guaranteeing correct
execution with this mechanism is only 1.2%.

5. Methodology
5.1. System Modeling and Con�guration
We model our proposed NDP GPU architecture by modify-
ing GPGPU-Sim 3.2.0 [6] to include the modeling of memory
stacks and logic layer SMs. The o�-chip links between GPU
and memory stacks are modeled as unidirectional high-speed

7Note that this mechanism may potentially change the observed ordering
for other threads in the same CTA. Without o�oading, the other threads
in the same CTA can observe the data change immediately as they run on
the same SM. With o�oading, the other threads cannot observe it until the
o�oaded block completes. However, this is not a problem because cross-
thread ordering is not guaranteed without explicit memory barrier/thread
synchronization instructions. Since we do not include such synchronization
instructions in o�oaded candidate blocks, all threads still observe the correct
values at the memory barrier or thread synchronization point.

links using BookSim [11], a cycle-accurate interconnection
network simulator also used for on-chip interconnect sim-
ulation in GPGPU-Sim. We faithfully model all overheads
incurred by our proposed NDP architecture, including the
tra�c from transferring live-in/live-out registers for o�oaded
blocks and any cache coherence overhead. Since we assume
the learning phase of the programmer-transparent data map-
ping is executed out of the CPU memory (before data is copied
over to the GPU memory), all memory accesses in the learn-
ing phase are modeled with the measured PCI-E bus latency
from Miller et al. [36].

In our architecture, we assume cross-stack links to allow
remote data access for the SMs in memory stacks. The band-
width of each link is 0.5× of each link between the GPU
and each memory stack. We assume the internal memory
bandwidth in memory stacks is 2× of the link bandwidth
between GPU and memory stacks. Compared to some prior
3D-stacked proposals [2,14,60], this is a conservative assump-
tion. However, valid arguments can be made to consider even
more conservative design points for the internal memory
bandwidth of the stacks. As such, we also evaluate a system
con�guration that matches internal and external memory
bandwidth.8 That is, the baseline GPU would be able to fully
saturate a memory stack’s bandwidth in this design point.

Table 1 summarizes our simulation parameters. The GPU
con�guration and the GPU-to-memory bandwidth are similar
to the con�guration of NVIDIA Maxwell, a state-of-art GPU
architecture. To make a fair comparison between the baseline
GPU system and our NDP GPU system, the total number of
SMs in these two con�gurations are the same.

For our energy evaluations, we use GPUWattch [33] to
model the power consumption of the SMs (both GPU SMs
and memory stack SMs) and on-chip interconnect. We assume
the o�-chip link consumes 2 pJ/bit for packet transfer, and
1.5 pJ/bit/cycle when it is idle [27]. The power of stacked
memory is calculated using the Rambus power model [57],
which models the power consumption of TSVs [29] and 3D-
stacked DRAM devices [8]. From this model, row activation
energy is estimated to be 11.8 nJ for a 4KB row and the DRAM
row-bu�er read energy is 4 pJ/b.

Our baseline memory mapping is similar to the one used
by Chatterjee et al [9]. We spread consecutive cache lines
to di�erent memory stacks and vaults to maximize memory
level parallelism and load balance across them. Similar to
prior work [61], we XOR a subset of higher-order bits to
form the memory stack index to prevent pathological access
con�icts on a speci�c memory stack.
5.2. O�loading Candidate Selection Tool
We implement a tool to analyze the PTX (Parallel Thread
Execution ISA) �les generated by the CUDA compiler [40].
This tool performs the static analysis proposed in Section 3.1.
The tool analyzes all potential instruction blocks at the PTX
level, and calculates memory bandwidth savings using the
equations in Section 3.1. The number of live-in registers is cal-
culated by determining the number of operands that are not

8Section 6.5 provides the results of sensitivity studies on the cross-stack
link bandwidth and the internal memory bandwidth.



Table 1: Major simulation parameters.
Main GPU

Core Number 68 SMs for baseline
64 SMs for the NDP system

Core Clustering 4 SMs per cluster
Core Con�guration 1.4 GHz, 48 warps/SM

32 threads/warp, 32768 registers
8 CTAs/SM, 48KB shared memory

Private L1 Cache 32KB, 4-way, write through
Shared L2 Cache 1MB, 16-way, write through
Clock Frequency Interconnect 1.25 GHz, L2 700 MHz

O�-chip Links
GPU to Memory 80 GB/s per link, 320 GB/s total

Memory to Memory 40 GB/s per link, fully connected
Memory Stack

SM in Memory Stack 1 SM per memory stack, 48 warps/SM
Memory Stack Con�guration 4 memory stacks, 16 vaults/stack

16 banks/vault, 64 TSVs/vault
1.25 Gb/s TSV signaling rate

Internal Memory Bandwidth 160 GB/s per memory stack
640 GB/s total

DRAM Scheduling Policy FR-FCFS [47, 63]
DRAM Timing DDR3-1600 [35]

generated using the instruction block itself, and the number
of live-out registers is calculated by determining the number
of operands that are needed by subsequent instructions. The
tool identi�es loops by �rst detecting backward conditional
branch instructions. When the condition of the branch is a
comparison to a value that is generated within the block with
a simple add/subtract operation, the condition is identi�ed as
a loop condition. The output of the tool is the list of o�oading
candidate blocks with their associated begin/end PCs, live-
in/live-out registers, 2-bit tags to indicate whether o�oading
the block would save bandwidth on TX/RX channels, and the
condition to o�oad if it is a conditional o�oading candidate.
The output of the tool is then fed into our GPGPU-Sim-based
performance model. Our tool works on PTX because the
evaluation infrastructure, GPGPU-Sim, works only on PTX.
The same idea can be directly applied to SASS or any other
instruction set that runs on real GPUs.

5.3. Evaluated Applications and Metrics

We evaluate the memory intensive workloads (with memory
bandwidth utilization >50%) from Rodinia 3.0 [10] , scienti�c
workloads used by GPGPU-Sim [6], and CUDA SDK [39].
We do not consider compute-intensive workloads, as TOM
does not �nd o�oading candidates in these workloads; hence,
their performance is not a�ected. We use the slightly mod-
i�ed K-means from Rogers et al. [48], which replaces tex-
ture/constant memory with global memory to use a larger
input. Table 2 summarizes our workloads. We run all appli-
cations to completion or for 2 billion instructions, whichever
comes �rst. We record the performance metrics at the same
point of execution across all con�gurations.

The major performance metric we use is IPC (Instruction
Per Cycle), and we normalize it to a baseline GPU system
without NDP. We also present the total memory tra�c on
all o�-chip links (including GPU-to-memory and memory-to-
memory) to quantify o�-chip bandwidth.

Table 2: Summary of applications.
Name Abbr. Name Abbr.

Back Propagation [10] BP BFS Graph Traversal [10] BFS
K-means [10, 48] KM CFD Solver [10] CFD
Heartwall [10] HW LIBOR Monte Carlo [6] LIB

RAY Tracing [6] RAY Fast Walsh Transform [39] FWT
Scalar Product [39] SP Parallel Reduction [39] RD

6. Results
We evaluate the e�ect of our proposal, TOM, on application
performance, memory tra�c, and energy consumption. We
evaluate two NDP policies: (i) NDP-Uncontrolled or no-ctrl: al-
ways o�oading the candidate blocks and (ii) NDP-Controlled
or ctrl: enabling dynamic o�oading control described in Sec-
tion 3.3. We evaluate these NDP policies along with two
memory mapping schemes: (i) bmap: baseline GPU mem-
ory mapping [9], and (ii) tmap: our proposed programmer-
transparent data mapping. Unless speci�ed otherwise, the
results are over a baseline GPU without NDP and with the
baseline memory mapping described in Section 5.
6.1. E�ect on Performance
Figure 8 shows the speedup of various NDP policies using dif-
ferent memory mapping schemes, normalized to the baseline
system. Three major observations are in order:

1. TOM signi�cantly improves performance. When all
TOM techniques are enabled (NDP-Controlled and tmap), av-
erage performance improves by 30% (up to 76%) over the
baseline. We observe speedup for all workloads. As the base-
line has the same number of SMs as our NDP con�guration,
we conclude that automatically moving some computation to
memory stacks with TOM provides better performance than
having additional SMs at the main GPU.

2. Programmer-transparent data mapping improves per-
formance over baseline memory mapping. On average, NDP
with programmer-transparent data mapping (tmap) provides
an additional 10% speedup over NDP with baseline mem-
ory mapping (bmap). For some workloads, the improvement
from programmer-transparent data mapping is signi�cant.
KM’s performance improves from 3% to 39% and RD’s perfor-
mance improves from 51% to 76% as a result of better memory
mapping. Some workloads are not sensitive to programmer-
transparent data mapping because the mapping chosen by our
data mapping is very similar to the baseline mapping. There
is one workload (BFS) that gets slower with programmer-
transparent data mapping (NDP’s improvement reduces from
29% to 21%). The reason is that BFS is a very irregular work-
load, and the mapping chosen by our mechanism with the
initial 0.1% o�oading candidate instances is not the best one
for all o�oading candidate instances. Assuming we had ora-
cle knowledge and we chose the optimal mapping, the per-
formance improvement of BFS would be 64% (not shown).9

3. O�oading aggressiveness control is an enabler for
NDP’s performance improvements. Without o�oading con-
trol (NDP-Uncontrolled), the system becomes slower by 3%/7%
on average (with tmap/bmap). This is because the main SMs

9This number is di�erent from (and actually higher than) that in Fig-
ure 3 for BFS, because the experiments in Figure 3 do not include all the
mechanisms we propose, whereas the experiments in Section 6 do.



0.0

0.5

1.0

1.5

bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Sp
ee

du
p

NDP-Uncontrolled (no-ctrl) NDP-Controlled (ctrl)

Figure 8: Speedup with di�erent NDP o�loading and memory mapping policies.

0.0

0.5

1.0

1.5

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap
BP BFS KM CFD HW LIB RAY FWT SP RD AVG

N
or

m
al

iz
ed

M
em

or
y 

Tr
af

fic

GPU-Memory RX Channel GPU-Memory TX Channel Memory-Memory Channel

Figure 9: Memory tra�c with di�erent NDP o�loading and memory mapping policies.

o�oad more warps than the memory stack SMs can han-
dle. As such, the computational capacity of memory stack
SMs becomes the new bottleneck. However using o�oad-
ing aggressiveness control (NDP-Controlled) improves per-
formance by 30% over the baseline, and the workloads that
are otherwise slowed down by uncontrolled o�oading be-
come signi�cantly faster. For instance, o�oading control
enables LIB to experience a performance improvement of
+52% instead of a degradation of -64%. On average, o�oaded
instructions reduce from 46.4% (NDP-Uncontrolled) to 15.7%
(NDP-Controlled) of all instructions executed (not graphed).
We conclude that the mechanism we propose in Section 3.3
for controlling how aggressively we o�oad blocks on an
NDP architecture is essential to enabling NDP’s performance
improvements.

6.2. E�ect on Memory Tra�c
Figure 9 shows the e�ect of NDP o�oading and memory
mapping on o�-chip memory tra�c. The memory tra�c is
normalized to the baseline, and segmented by the channel
category. We make two major observations.

First, as expected, TOM is e�ective in reducing the over-
all memory tra�c. When the system o�oads all candidate
blocks with programmer-transparent data mapping (no-ctrl
and tmap), the total memory tra�c reduces by 38% on aver-
age (up to 99%). This shows the e�ectiveness of our automatic
o�oading candidate selection and programmer-transparent
data mapping. With controlled o�oading (ctrl and tmap), the
memory tra�c reduction is 13% on average (up to 37%). This
is much less than the uncontrolled o�oading because some
memory-intensive o�oading candidates are still executed in
the GPU. It also implies that if we increase the computational
capacity of SMs in memory stacks, we can potentially o�oad
more work to them and save more memory tra�c. We discuss
this further in Section 6.4.

Second, programmer-transparent data mapping is very ef-
fective at reducing memory-to-memory tra�c. On average,
memory-to-memory tra�c is reduced from 55% (bmap) to

22% (tmap) of the total memory tra�c in the baseline when
we o�oad all candidate blocks (no-ctrl), which is a 2.5× reduc-
tion. We observe a similar reduction ratio with controlled of-
�oading (ctrl with bmap and tmap). The memory-to-memory
tra�c is a smaller proportion in this case because some of-
�oading candidates are executed in the main GPU.

6.3. E�ect on Energy Consumption
Figure 10 shows the e�ect of our NDP architecture on en-
ergy consumption. Energy consumption is segmented by the
source. We make two major observations.

First, TOM is e�ective in reducing system energy consump-
tion. Total energy consumption reduces by 11% on average
(up to 37%) when all TOM techniques are enabled (ctrl + tmap).
Compared to the baseline, average energy consumption due
to SMs reduces from 77% to 68%, while the energy consump-
tion due to o�-chip links reduces from 7% to 5%. These energy
savings are mainly a result of the performance improvement
which reduces leakage energy, and reduced memory tra�c
over o�-chip links.

Second, both programmer-transparent data mapping and
o�oading aggressiveness control are important to the energy
savings. Without them, total energy consumption increases
by 8% on average. This is mainly because the system runs
slower without these techniques. Even though memory tra�c
reduces without these techniques, the extra leakage energy
due to longer execution time overshadows the savings from
transmitting fewer memory packets.

6.4. Sensitivity to Computational Capacity of SMs
in Memory Stacks

The performance and tra�c results indicate a trade-o� be-
tween performance improvement and tra�c reduction. With
o�oading aggressiveness control, we see an average perfor-
mance improvement of 30% with a memory tra�c reduction
of 13%. However, o�oading all candidate blocks degrades
performance by 3%, but saves 38% memory tra�c. With of-
�oading aggressiveness control enabled, TOM does not save



0.0
0.5
1.0
1.5

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

no
-c
trl ct
rl

bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap bmap tmap

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

N
or

m
al

iz
ed

 E
ne

rg
y SMs Off-chip Links DRAM Devices

Figure 10: Energy consumption with di�erent NDP o�loading and memory mapping policies.

as much memory tra�c because some memory-intensive
candidate blocks are still executed on the GPU.

We can get the best of both worlds by adding more com-
putational resources (i.e., warp capacity) to memory stack
SMs because limited warp capacity is the major reason we
need o�oading aggressiveness control. To increase warp
capacity, we need to add more storage for the register �le,
warp state, and the warp scheduler. The major cost comes
from additional registers. To begin with, memory stack SMs
require fewer registers per thread than the main GPU SMs
since an o�oaded block executes only a portion of the code in
a kernel. We �nd that the largest number of live registers in
an o�oaded block is 26 versus 49 for an entire thread, among
all our workloads. This means that if we increased the size
of the register �le on a memory stack SM to be the same as
that on the main GPU, we could potentially run 2× the warps
on a memory stack SM. Figures 11 and 12 show the e�ect of
adding warp capacity on performance and memory tra�c.

0.0

0.5

1.0

1.5

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Sp
ee
du
p

no-ctrl-1X-warp ctrl-1X-warp ctrl-2X-warp ctrl-4X-warp

Figure 11: Speedupwith di�erent warp capacities inmemory
stack SMs.

0.0

0.5

1.0

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

N
or

m
al

iz
ed

 
M

em
or

y 
Tr

af
fic

no-ctrl-1X-warp ctrl-1X-warp ctrl-2X-warp ctrl-4X-warp

Figure 12: Memory tra�c with di�erent warp capacities in
memory stack SMs.

As the �gures show, adding warp capacity to memory
stack SMs saves more memory tra�c while maintaining high
performance improvements. On average, 4× warp capacity
(ctrl-4×-warp) saves an additional 20% memory tra�c over
1× warp capacity (ctrl-1×-warp) while maintaining similar
average speedup. The memory tra�c savings with 4× warp
capacity is 34% compared to the baseline, which is close to the
38% tra�c reduction from uncontrolled o�oading. Perfor-
mance also improves by 29% with 4× warp capacity compared
to the baseline, and most workloads have better performance
than with 1× warp capacity. The only exception is RD, which
runs signi�cantly slower with more warp capacity. This is
because more than half of the instructions in the o�oaded
blocks of RD are ALU instructions, so running 4× warps

in parallel on the memory stack SMs makes the compute
pipelines of these SMs new bottlenecks. A more sophisti-
cated o�oading aggressiveness mechanism that considers
the ALU instruction ratio would help alleviate this problem,
and we leave it as future work. We conclude that increasing
warp capacity can maintain high performance improvements
while signi�cantly reducing memory tra�c.

6.5. Sensitivity to Internal and Cross-Stack
Memory Bandwidth

Many NDP proposals based on 3D-stacked memory assume
the memory stack compute units can exploit much more
internal memory bandwidth from TSVs, and that bandwidth
cannot necessarily be fully utilized by the main processor in
the system because of cost and speed of o�-chip links and
pins [2, 14, 60]. In most of our evaluations, we also assumed
that the total internal memory bandwidth is 2× the external
link bandwidth that links the GPU to each memory stack.
However, such an assumption may not always be true, as the
bene�t of building a memory stack with such high internal
bandwidth may not always justify its cost. Thus, we also
evaluate our NDP architecture with a con�guration where
the internal memory bandwidth is equal to the external link
bandwidth. Figure 13 presents the performance results.

0.0

0.5

1.0

1.5

BP BFS KM CFD HW LIB RAY FWT SP RD AVG

Sp
ee
du
p

2X-internal-BW 1X-internal-BW

Figure 13: Speedup with di�erent internal bandwidth in
memory stacks.

The speedup with equal internal/external memory band-
width (1×-internal-BW ) is on average within 2% of that
achieved with 2X internal memory bandwidth (2×-internal-
BW ). On average, NDP with equal internal/external band-
width has 28% speedup over the baseline. As such, the per-
formance of our NDP architecture does not hinge on higher
internal bandwidth from TSVs. The reason is that the main
GPU is usually bottlenecked by one of the TX/RX o�-chip
channels. Our NDP o�oading enables memory stack SMs to
directly access the memory controller with on-package inter-
connect. These SMs can make use of the internal memory
bandwidth when the GPU is bottlenecked by one of the two
channels. This makes our NDP architecture more e�cient
even without extra internal bandwidth in the memory stacks.

Another parameter in our NDP architecture is the memory
bandwidth of cross-stack links that allow remote data access



for the SMs in memory stacks. We choose the cross-stack
link bandwidth as 0.5× of the GPU-to-stack links by default
because the cross-stack bandwidth requirements are smaller.
We sweep this ratio of cross-stack link bandwidth to GPU-to-
stack link bandwidth. Average performance bene�t is 17% for
0.125×, 29% for 0.25× and 31% for 1×. These results show
that performance gains of our mechanism are signi�cant for
a wide range of design points.
6.6. Area Estimation
The major area overhead of our proposed NDP architecture
comes from storage for three components: the memory map-
ping analyzer (Section 4.1), the memory allocation table, and
the o�oading metadata table (Section 4.3).

For each o�oading candidate instance, the Memory Map
Analyzer needs 40 bits to support 10 potential memory map-
pings in a 4 memory stack system. With 48 warps/SM, we
need 40 × 48 = 1,920 bits storage in the memory map ana-
lyzer per SM to support all concurrent warps. In the memory
allocation table, each entry contains the start address, the
length, and a bit that indicates whether the corresponding
range will be accessed by an o�oaded block. Therefore, we
need 97 bits to support a 48-bit virtual address space. Assum-
ing the maximum number of entries is 100, we need 9,700
bits for the memory allocation table shared among all SMs.
Third, each entry in the o�oading metadata table contains
begin/end PCs, bit vectors for live-in/live-out registers, a 2-bit
tag for the bandwidth reduction on TX/RX channels, and the
condition to o�oad it. We estimate this structure needs 258
bits based on CUDA PTX ISA 1.4 [41]. Assuming we need
to support 40 entries in the table, which is 2× the maximum
number of entries observed in our workloads, we need 10,320
bits for this structure in each SM.

We estimate our proposal’s area with CACTI 6.5 [58] using
the 40nm process node, the same process node our con�gu-
ration assumes. The total area overhead is 0.11 mm2, which
is an insigni�cant 0.018% of the GPU area we model.

7. Related Work
To our knowledge, this is the �rst work that develops
programmer-transparent methods for o�oading code and co-
locating data and code to enable near-data processing in GPU-
based systems that employ 3D-stacked memory. No previous
work we know of developed methods for automatically (1)
identifying instruction blocks from unmodi�ed programs to
o�oad to NDP computation engines, and (2) mapping data to
multiple memory stacks such that the data and the o�oaded
code that accesses it are co-located on the same memory stack.
In this section, we discuss related works on 1) processing in
memory and 2) placing data close to compute units, both of
which are related to di�erent aspects of our proposal.

Processing in Memory (PIM) has been explored to in-
tegrate computation units within memory (e.g., [13, 15, 19,
23, 28, 42, 43, 49–52, 54]). This idea has been revived with
the emergence of 3D-stacked memory technology, and there
have been been a number of more recent proposals that aim
to improve the performance of data-intensive workloads
using accelerators or compute units in 3D-stacked mem-
ory [2–5, 14, 16, 17, 32, 46, 55, 60, 62]. These works either 1)

require signi�cant programmer e�ort to map computation to
PIM computation units, 2) do not consider the data mapping
problem to multiple di�erent computation units in di�erent
memory chips, or 3) are not applicable to GPU-based systems.

Among these works, the closest to ours is Lee et al.’s pro-
posed compiler algorithm to automatically map code to a
FlexRAM architecture [31]. This algorithm estimates the exe-
cution time of instruction modules on the host processor and
the memory processor, and schedules instruction modules to
the processor that would execute them faster. In contrast to
our proposal, this work 1) is not applicable to modern GPU
systems because the key bottleneck of GPU systems is mem-
ory bandwidth instead of latency and as such, 2) proposes
a very di�erent algorithm than ours, and 3) does not tackle
the data mapping challenge to multiple memory stacks (as it
assumes there is only a single memory chip with computation
units).
Placing Data Close to Computation Units. The prob-

lem of placing data close to the computation unit that re-
quires it has been examined in various contexts, including for
NUMA (Non-Uniform Memory Access, e.g., [7]) and NUCA
(Non-Uniform Cache Access, e.g., [25]) based systems. The
challenge we solve is similar at a high-level, but our problem
context (i.e., a GPU-based NDP system, which is inherently
heterogeneous) is di�erent and unique in two ways. First,
as we discuss in Section 3.2, our data mapping mechanism
needs to consider and satisfy the di�erent requirements of
both the NDP computation units and the main GPU for data
mapping. For NDP units, data should be mapped close to
computation units, but for the main GPU, data should be
mapped to maximize bandwidth utilization. Past works did
not tackle varying data placement requirements from hetero-
geneous execution elements. Second, in a GPU-based NDP
system, there is no system software running on the NDP com-
putation units: these units are controlled by the main GPU
and their memory is pre-allocated.10 As a result, dynamic
and sophisticated data mapping mechanisms are less attrac-
tive in the GPU-based NDP system, and we develop a simple
data placement mechanism, which no past work examined.
Finally, none of these past works on data placement tackle
the challenge of automatically �nding code blocks to execute
in near-data computation units.

8. Conclusion
We introduce TOM (Transparent O�oading and Mapping),
a combination of new techniques that enable computation
o�oading and e�cient data mapping to multiple 3D-stacked
memories in a GPU system, without burdening the program-
mer. TOM consists of two key ideas. First, it statically iden-
ti�es instruction blocks with maximum potential memory
bandwidth savings from o�oading, and dynamically decides
whether or not the selected candidates should actually be
o�oaded based on runtime system conditions. Second, it
exploits the predictability in memory access patterns of of-
�oaded instruction blocks to co-locate o�oaded code and

10In contrast, most previous works on placing data close to computation
units in NUMA-based systems assume that system software can perform
page allocation, migration, or duplication across the computation units.



data in the same memory stack. We have shown, through ex-
tensive evaluations, that TOM signi�cantly improves perfor-
mance while also reducing energy consumption and o�-chip
memory tra�c, even with conservative assumptions about
the internal bandwidth available in the memory stacks. We
conclude that TOM is a practical and e�ective approach to
enabling programmer-transparent near-data processing in
GPU systems.

Acknowledgments
We thank the anonymous reviewers, members of NVIDIA
Research and the SAFARI Research Group for their feedback.
Special thanks to David W. Nellans, Daniel R. Johnson, Aamer
Jaleel, and Evgeny Bolotin for feedback. We acknowledge
the support of our industrial partners: Google, Intel, NVIDIA,
Samsung and Seagate. This research was partially supported
by NSF (grants 1212962, 1409723), ISTC-CC, SRC, DSSC, and
the United States Department of Energy.

References
[1] N. Agarwal et al., “Selective GPU caches to eliminate CPU-GPU HW

cache coherence,” in HPCA, 2016.
[2] J. Ahn et al., “A scalable processing-in-memory accelerator for parallel

graph processing,” in ISCA, 2015.
[3] J. Ahn et al., “PIM-Enabled Instructions: A low-overhead, locality-

aware processing-in-memory architecture,” in ISCA, 2015.
[4] B. Akin et al., “Data Reorganization in memory using 3D-stacked

DRAM,” in ISCA, 2015.
[5] O. O. Babarinsa and S. Idreos, “JAFAR: near-data processing for

databases,” in SIGMOD, 2015.
[6] A. Bakhoda et al., “Analyzing CUDA workloads using a detailed GPU

simulator,” in ISPASS, 2009.
[7] R. Chandra et al., “Scheduling and page migration for multiprocessor

compute servers,” in ASPLOS, 1994.
[8] K. Chandrasekar et al., “System and circuit level power modeling of

energy-e�cient 3D-stacked wide I/O DRAMs,” in DATE, 2013.
[9] N. Chatterjee et al., “Managing DRAM latency divergence in irregular

GPGPU applications,” in SC, 2014.
[10] S. Che et al., “Rodinia: A benchmark suite for heterogeneous comput-

ing,” in IISWC, 2009.
[11] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection

Networks, 2004.
[12] R. G. Dreslinski et al., “Centip3De: A 64-Core, 3D stacked near-

threshold system,” IEEE Micro, 2013.
[13] D. G. Elliott et al., “Computational RAM: A Memory-SIMD hybrid and

its application to DSP,” in CICC, 1992.
[14] A. Farmahini-Farahani et al., “NDA: Near-DRAM acceleration archi-

tecture leveraging commodity DRAM devices and standard memory
modules,” in HPCA, 2015.

[15] B. B. Fraguela et al., “Programming the FlexRAM parallel intelligent
memory system,” in PPoPP, 2003.

[16] M. Gao et al., “Practical near-data processing for in-memory analytics
frameworks,” in PACT, 2015.

[17] M. Gao and C. Kozyrakis, “HRL: e�cient and �exible recon�gurable
logic for near-data processing,” in HPCA, 2016.

[18] M. Giles and S. Xiaoke, “Notes on using the NVIDIA 8800 GTX graph-
ics card,” https://people.maths.ox.ac.uk/gilesm/codes/libor_old/report.
pdf.

[19] M. Gokhale et al., “Processing in memory: The Terasys massively
parallel PIM array,” IEEE Computer, 1995.

[20] GPGPU-Sim, “GPGPU-Sim Manual.”
[21] A. Jog et al., “OWL: Cooperative Thread Array Aware Scheduling

Techniques for Improving GPGPU Performance,” in ASPLOS, 2013.
[22] D. Johnson et al., “Rigel: A 1,024-core single-chip accelerator architec-

ture,” IEEE Micro, 2011.
[23] Y. Kang et al., “FlexRAM: Toward an advanced intelligent memory

system,” in ICCD, 1999.

[24] J. H. Kelm et al., “WAYPOINT: Scaling coherence to thousand-core
architectures,” in PACT, 2010.

[25] C. Kim et al., “An adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches,” in ASPLOS, 2002.

[26] D. H. Kim et al., “3D-MAPS: 3D massively parallel processor with
stacked memory,” in ISSCC, 2012.

[27] G. Kim et al., “Memory-centric system interconnect design with hybrid
memory cubes,” in PACT, 2013.

[28] P. M. Kogge, “EXECUBE-a new architecture for scaleable MPPs,” in
ICPP, 1994.

[29] D. U. Lee et al., “A 1.2 V 8Gb 8-channel 128GB/s high-bandwidth
memory (HBM) stacked DRAM with e�ective microbump I/O test
methods using 29nm process and TSV,” in ISSCC, 2014.

[30] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost,” ACM TACO, 2016.

[31] J. Lee et al., “Automatically mapping code on an intelligent memory
architecture,” in HPCA, 2001.

[32] J. H. Lee et al., “BSSync: Processing near memory for machine learning
workloads with bounded staleness consistency models,” in PACT, 2015.

[33] J. Leng et al., “GPUWattch: enabling energy optimizations in GPGPUs,”
in ISCA, 2013.

[34] “Hybrid Memory Cube Speci�cation 2.0,” 2014.
[35] Micron Technology, “4Gb: x4, x8, x16 DDR3 SDRAM,” 2011.
[36] D. J. Miller et al., “Motivating future interconnects: a di�erential

measurement analysis of PCI latency,” in ANCS, 2009.
[37] V. Narasiman et al., “Improving GPU Performance via Large Warps

and Two-Level Warp Scheduling,” in MICRO, 2011.
[38] NVIDIA, “NVIDIA CUDA C Programming Guide.”
[39] NVIDIA, “NVIDIA CUDA SDK 4.2.”
[40] NVIDIA, “NVIDIA CUDA Toolkit.”
[41] NVIDIA, “NVIDIA PTX ISA Version 1.4.”
[42] M. Oskin et al., “Active Pages: a computation model for intelligent

memory,” in ISCA, 1998.
[43] D. Patterson et al., “A case for intelligent RAM,” IEEE Micro, 1997.
[44] G. Pekhimenko et al., “A case for toggle-aware compression for GPU

systems,” in HPCA, 2016.
[45] J. Power et al., “Heterogeneous system coherence for integrated CPU-

GPU systems,” in MICRO, 2013.
[46] S. H. Pugsley et al., “NDC: Analyzing the impact of 3D-stacked mem-

ory+logic devices on MapReduce workloads,” in ISPASS, 2014.
[47] S. Rixner et al., “Memory access scheduling,” in ISCA, 2000.
[48] T. G. Rogers et al., “Cache-conscious wavefront scheduling,” in MICRO,

2012.
[49] V. Seshadri et al., “Gather-Scatter DRAM: In-DRAM Address Transla-

tion to Improve the Spatial Locality of Non-unit Strided Accesses,” in
MICRO, 2015.

[50] V. Seshadri et al., “Fast bulk bitwise AND and OR in DRAM,” CAL,
2015.

[51] V. Seshadri et al., “RowClone: fast and energy-e�cient in-DRAM bulk
data copy and initialization,” in MICRO, 2013.

[52] D. E. Shaw et al., “The NON-VON database machine: A brief overview,”
IEEE Database Eng. Bull., 1981.

[53] I. Singh et al., “Cache coherence for GPU architectures,” in HPCA,
2013.

[54] H. S. Stone, “A logic-in-memory computer,” IEEE TC, 1970.
[55] Z. Sura et al., “Data access optimization in a processing-in-memory

system,” in CF, 2015.
[56] N. Vijaykumar et al., “A case for core-assisted bottleneck acceleration

in GPUs: enabling �exible data compression with assist warps,” in
ISCA, 2015.

[57] T. Vogelsang, “Understanding the energy consumption of dynamic
random access memories,” in MICRO, 2010.

[58] S. J. Wilton and N. P. Jouppi, “CACTI: An enhanced cache access and
cycle time model,” IEEE Journal of Solid-State Circuits, 1996.

[59] D. H. Woo et al., “POD: A 3D-integrated broad-purpose acceleration
layer,” IEEE Micro, 2008.

[60] D. P. Zhang et al., “TOP-PIM: Throughput-oriented Programmable
Processing in Memory,” in HPDC, 2014.

[61] Z. Zhang et al., “A permutation-based page interleaving scheme to
reduce row-bu�er con�icts and exploit data locality,” in MICRO, 2000.

[62] Q. Zhu et al., “Accelerating sparse matrix-matrix multiplication with
3D-stacked logic-in-memory hardware,” in HPEC, 2013.

[63] W. K. Zuravle� and T. Robinson, “Controller for a synchronous DRAM
that maximizes throughput by allowing memory requests and com-
mands to be issued out of order,” 1997, US Patent 5,630,096.


