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Abstract—Modern highly parallel GPU systems require high-
bandwidth DRAM I/O interfaces that can consume a significant
amount of energy. This energy increases in proportion to
the number of 1 values in the data transactions due to the
asymmetric energy consumption of Pseudo Open Drain (POD)
I/O interface in contemporary Graphics DDR SDRAMs.

In this work, we describe a technique to save energy by
reducing the energy-expensive 1 values in the DRAM interface.
We observe that multiple data elements within a single cache
line/sector are often similar to one another. We exploit this
characteristic to encode each transfer to the DRAM such that
there is one reference copy of the data, with remaining similar
data items being encoded predominantly as 0 values. Our
proposed low energy data transfer mechanism, Base+XOR
Transfer, encodes the data-similar portion by performing XOR
operations between data elements within a single DRAM
transaction. We address two challenges that influence the
efficiency of our mechanism, i) the frequent appearance of
zero data elements in transactions, and ii) the diversity in
the underlying size of data types within a transaction. We
describe two techniques, Zero Data Remapping and Universal
Base+XOR Transfer, to efficiently address these issues. Our
proposed encoding scheme requires no additional metadata or
changes to existing DRAM devices.

We evaluate our mechanism on a modern high performance
GPU system with a variety of graphics and compute work-
loads. We show that our mechanism reduces energy-expensive
1 values by 35.3 % with minimal overheads, and combining our
mechanism with Dynamic Bus Inversion (DBI) reduces 1 values
by 48.2 % on average. These 1 value reductions lead to 5.8 %
and 7.1 % DRAM energy savings, respectively.

I. INTRODUCTION

Increasing DRAM bandwidth has been a key challenge to
enable higher throughput in GPU systems. To meet this high
bandwidth demand, Graphics DDR (GDDR) DRAMs use a
very high speed I/O interface. The most recent generation
of Graphics DDR DRAM, GDDR5X, offers a road-map up
to 14 Gbps per pin bandwidth [1, 2], which is 1.75× the
bandwidth of the previous GDDR5 generation. This trend to-
wards increasing bandwidth, however, has not been matched
by reductions of a similar magnitude in the energy required
for each access. Figure 1 shows that while bandwidth has
increased 2× from GDDR5 to the latest GDDR5X, the
energy per access has only been reduced 19 %. As a result,
total power at peak bandwidth has increased by 63 %. This
growing DRAM power demand is an increasingly important
issue facing these high-bandwidth systems.

∗ Both authors contributed equally to the paper.
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Figure 1: Hypothetical GPU memory system trend

A large portion of DRAM energy is dissipated in the I/O
channel (Section V-A and [3, 4]). To enable reliable high-
speed operation, contemporary DRAM adopts termination-
based I/O schemes. For example, GDDR5/GDDR5X uses
a Pseudo Open Drain (POD) I/O interface that introduces
a termination resistor between the I/O channel and the
VDD voltage source. This termination resistor creates a
static current flow when driving the channel to 0V , which
dissipates significant fraction of the I/O energy. Due to the
asymmetric termination scheme, transferring one value (e.g.,
a 1) consumes more energy than transferring the other value
(e.g., a 0).1 GDDR5/GDDR5X leverages this asymmetric
characteristic by adopting a data encoding technique, Dy-
namic Bus Inversion (DBI) [5], which conditionally transfers
the inverted form of data if it is expected to reduce data
transfer energy.

Our goal in this work is to further reduce the energy
consumption on terminated DRAM I/O interfaces by reduc-
ing the number of energy-expensive 1 values. We leverage
the facts that i) multiple data elements are simultaneously
transmitted in a single transaction together over a DRAM
channel and ii) there often exists a large amount of similarity
among these elements. Similar to observations leading to
some compression schemes (e.g., [6, 7]), this data similarity
among adjacent data elements allows the same information
to be encoded into a more energy efficient form, such
as one with reduced switching activity or fewer 1 values.
SILENT [8] leverages this data similarity among adjacent
data words to reduce switching activity for better energy
efficiency in a serial interface within an SoC. The key idea
is transferring the bulk of the data words as the bitwise
difference from their adjacent words. To take advantage
of the intra-transaction similarity among the data elements,

1 In this work, we use the common convention that a 1 value is transferred
as 0V and a 0 value is transferred as VDD. Therefore, transferring a 1 is
more energy expensive than a 0.



we build upon the basic approach described in SILENT
to reducing the energy consumption on the parallel I/O
interface on conventional DRAM channels.

Like SILENT, our base data encoding mechanism,
Base+XOR Transfer, encodes the similar data elements
by performing a simple XOR operation of values within a
transaction. An unmodified data element is called the base
element and the remaining elements are encoded as XORed
values with the base or the adjacent element. We observe
two issues that adversely impact the effectiveness of this
base version of our mechanism, and we provide ways to
optimize the encoding to address these issues. First, there
are often a large number of zero data elements (e.g., a 4-byte
zero data element 00000000h) interspersed among the data
that can introduce more 1 values in the encoded result. This
potentially increases the overall data transfer energy. To
avoid this, we special-case zero data elements separately by
remapping encoded zero values to a low-weight constant that
includes only one 1 bit (minimizing the additional increase
in 1 values). We also remap the value that would be encoded
to this low-weight constant to the encoded value that a
zero data element would have had. Swapping these encoded
symbols requires us to add no additional metadata. This Zero
Data Remapping is described in Section IV-A.

Second, the efficiency of our mechanism highly depends
on properly determining the size of the base element (base
size) for the XOR operation. Since there are many data
structures that have different sizes, the size of repeated
similar data in a transaction could vary. If the base size
for XOR operations does not match to the size of the re-
peated similar data, our mechanism either fails to realize the
maximum potential benefit or, alternatively, can increase the
number of 1 values. A naive mechanism that exhaustively
performs XOR operations with all possible base sizes might
find the proper base size that maximizes the benefit. This
approach, however, induces significant overheads in energy
consumption, latency, and logic complexity. Furthermore,
metadata to communicate the selected granularity would be
required. Instead, we propose an Universal Base approach
that efficiently extracts the similar data portion without a
priori knowledge of the underlying data structure size. We
explain the details of this mechanism in Section IV-C.

We evaluate our mechanism on a high performance GPU
system executing a variety of graphics and compute work-
loads. Our evaluation shows that our optimized Base+XOR
Transfer encoding significantly reduces 1 values on average
by 35.3 % with a corresponding 5.8 % memory system
energy reduction, compared to the conventional data transfer
scheme. We achieve this at low cost, without any metadata,
and without any noticeable performance degradation. We
also consider the existing 1 value reduction techniques like
Dynamic Bus Inversion (DBI), and we show that our tech-
niques can reduce energy more than DBI by itself. However,
since DBI does provide guarantees on the maximum number

of 1 values and can be used to limit power-supply noise,
our scheme may not replace DBI. Applying Base+XOR
Transfer encoding in addition to DBI results in a cumulative
benefit, providing a 48.2 % reduction in 1 values and a
corresponding 7.1 % memory system energy reduction.

Our contributions of this work follow.
• We propose a new low power data transfer mechanism,

Base+XOR Transfer, which reduces terminated POD
I/O interface energy. Since the major operation is simple
XOR and our mechanism does not require any metadata,
systems can easily integrate our mechanism using existing
DRAMs and at low cost.

• We only leverage the intra-transaction similarity (within
a sector/a cacheline), the encoded data can be stored at
any data repository (e.g., cache or DRAM cells).

• We evaluate our mechanism on data from a high perfor-
mance GPU system and show that Base+XOR Transfer
can significantly reduce 1 values (by 35.3 %). Coupled
with DBI, 1 values can be reduced by 48.2 %. DRAM
energy is reduced 5.8 % and 7.1 %, respectively.

II. BACKGROUND

A. Pseudo Open Drain (POD) I/O Interface

In the GDDR DRAM interface, data is represented as two
different voltage levels (e.g., 0V or VDD). Figure 2 shows
the organization of a DRAM interface, driving data from
the left output driver to the right input buffer, which are
connected over a wire that has a parasitic capacitance (CC).
To improve channel integrity operating at high frequency,
DRAM integrates termination resistors on its channel. A
termination scheme, Pseudo Open Drain (POD), puts a
termination resistor (RT ) between the wire and VDD. Based
on our analysis (more details in Section V-A) and other prior
work [3, 4], the energy consumption on a POD I/O interface
is significant.

data wire
output 

driver
Input buffer

RC RC
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Figure 2: Energy consumption for moving data over wire

There are two major sources of energy consumption. The
first one is the parasitic capacitance (CC). To transfer a
0 value (represented as a VDD) over a wire that was initially
0V , the PMOS transistor in the driver is turned on, charging
CC by driving charge through ¶. Then, to transfer a 1 value
(represented as a 0V ), the NMOS transistor is turned on,
discharging the charge in CC. From these two steps of
charging and discharging the parasitic capacitance of the
wire for transferring a sequence of data, 1→ 0→ 1, the
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amount of charge Q flows from the VDD power source to
the ground, consuming energy.2

The second source of energy consumption is the termina-
tion resistor (RT ). Transferring a 1 value over the wire forms
a current path from VDD to ground over RT (as shown in
current path ·). This energy consumption depends on how
often bits with a 1 value are transferred. As we discuss more
detail in Section V-A, transferring a 1 value in GDDR5X
(10 Gbps per-pin data rate) dissipates 13.5 mA additional
current during the data period (100 ps). Due to this additional
current flow through RT , transferring a 1 value consumes
37 % more energy than transferring a 0 value.

B. Dynamic Bus Inversion (DBI)

To reduce the power consumption on the POD I/O
interface, GDDR5/5X supports Dynamic Bus Inversion
(DBI) [5], which conditionally inverts the data to be trans-
ferred so as to minimize the number of 1 values. When
transferring an n-bit element that has more than n/2 1 bits,
inverting the data and transferring this inverted value ensures
that no more then n/2 bits in the encoded result are 1. The
polarity information, indicating whether the current element
is inverted or not, is transferred as an additional bit of
metadata over an additional wire. Therefore, an n-bit data
element can be transferred as an (n+1)-bit encoded result
in which no more than n/2 bits are a 1. The element size,
n, is a major design parameter for DBI. Smaller element
sizes enable simpler implementations (an n-bit pop-count
is effectively required to determine whether inversion is
necessary) at the expense of a larger metadata overhead.
GDDR5/GDDR5X applies DBI over each 8 bits of data on
the I/O interface, thus requiring one additional wire for every
8 data signals.

III. REDUCING DATA TRANSFER ENERGY BY
EXPLOITING DATA SIMILARITY

Our goal in this work is to improve the energy efficiency
in the DRAM interface by reducing the number of 1 values
that must be sent across the interface. We observe that
often a transaction sent across the DRAM interfaces consists
of several similar data elements. By exploiting this intra-
transaction data similarity, we propose an encoding mecha-
nism that can reduce the number of 1 values. We describe
some challenges that limit the effectiveness of this approach,
and propose optimizations to address these issues.

A. Data Similarity within a Transaction

Within a GPU, a typical single DRAM transaction is a 32-
byte cache sector. This transaction will be sent across a 32-
bit interface to a GDDR5 DRAM over eight beats. Typically,
this 32-byte transaction will consist of several adjacent data
elements of a given size. For instance, it might consist

2 The parasitic resistance also consumes a small amount of energy that
is dissipated as thermal energy, increasing the temperature of the wire.

of four 64-bit double-precision floating-point values, eight
32-bit integers, or sixteen 16-bit floating-point values. The
SIMD nature of GPU execution units favors a programming
style that uses structures of arrays (SoA), rather than arrays
of structures commonly found in scalar CPU code [9]. As
a result, data fetched is very commonly from an array of
fixed-sized elements of a given data type.

Many prior works [6, 7, 10, 11] have observed signif-
icant similarities in adjacent data elements stored in on-
chip caches and off-chip memories. Due to the similarity
among data elements within a transaction (intra-transaction
similarity), identical or highly similar data could be trans-
ferred multiple times, repetitively sending energy-expensive
1 values, and increasing overall energy consumption in the
I/O interface. In Figure 3, we plot two transactions of 32-
byte data over the DRAM I/O interface in a GPU system.
Examining the eight beats of transaction0, the top
16-bit chunks of all elements are 0x390c. Repetitively
transferring the top 16-bit chunks of each element leads to
the six 1 bits being sent seven additional times. A simple
encoding scheme that prevents this redundant transfer of 1
bits is desired.
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Figure 3: Data transfer between DRAM and GPU: Data
similarity leads to duplicated data

B. Base+XOR Transfer

We exploit this data similarity within DRAM transactions
to reduce the number of 1 values in each DRAM transfer. We
leverage an earlier approach, SILENT [8], that encodes data
to reduce switching activity in a serial I/O interface, and we
modify it for a conventional DRAM channel. The key idea
is to simply transfer the bitwise difference (XOR) from each
adjacent data element rather than the element itself. If the
data is highly similar, this leads to fewer 1 values. Figure 4
shows the basic idea behind our mechanism (illustrated on a
16-byte transaction for simplicity). The transaction is divided
into four 4-byte (32-bit) elements, labeled element0 to
element3 from the left to the right. The key operation
follows.
• The left most 4-byte element (element0) is transferred

with no change. We call this the base element. We call
the size of the base element the base size.
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• The data in the second element (element1) is trans-
ferred as a bitwise difference (XOR) with respect to
element0. As a result, bits in element1, which have
the same values as the corresponding bits in element0,
are set to 0 value that is less energy expensive. The other
elements (element2 and element3) are also encoded
as a difference from their left adjacent elements. We call
these three elements XORed elements.

• The original values of the XORed elements can be de-
coded by simply performing the same XOR operations in
the reverse sequence with the XORed elements and their
left adjacent elements.

element 0

0000 0802 0000 1801 0000 0001390c 9bfb

390c 9bfb 390c 90f9 390c 88f8 390c 88f9

base element XORed elements

59 one values

24 one values

element 1 element 2 element 3

Figure 4: Base+XOR Transfer

Due to the data similarity within the transaction, perform-
ing XOR operations between adjacent elements in a transac-
tion tends to introduce many 0 values (which consume less
energy than 1 values) in the XORed elements. As a result,
our mechanism reduces the number of 1 values from 59 to
24 in this example. Note that we divide a transaction into
multiple elements by using a fixed base size and perform
XOR operations with these base-sized elements. We call
this basic mechanism when using an N-byte base: N-byte
Base+XOR Transfer.

IV. EFFICIENTLY EXTRACTING DATA SIMILARITY

The intra-transaction data similarities our scheme relies on
vary based on the application and the data set. Using data
collected from a large number of applications, we found two
key challenges that can negatively impact the efficacy of our
mechanism. First, there are many zero valued data elements
within transactions, often interspersed among other data.
This prevalence of zero data elements has been observed
in many prior works [11, 12, 13]. These zero valued data
elements are often poorly handled in our baseline scheme.
In Section IV-A, we describe why the problem occurs and
we detail our approach to better handle zero data elements.

Second, since the elements within a transaction can be of
different sizes, the data similarity can manifest at different
granularities. Therefore, determining the most appropriate
base size is critical for the XOR encoding. In Sections IV-B
and , we discuss the impact of the base size selection for the
XOR encoding, and introduce our low-overhead approach
that naturally exploits data similarity over the range of base
sizes.

A. Zero Data Remapping (ZDR)

We observe many zero data elements in data traces of
applications. Figure 5a illustrates a case in which applying

our mechanism makes things worse on a transaction that
includes zero data elements. Rather than keeping a zero
data element, another copy of a non-zero value to the left is
created during the encoding process (see the XORed result
of element1 in Figure 5a). This increases the total number
of 1 bits we must transmit, diminishing the benefits from the
encoding scheme.

0000 0000400e a95b 0000 0000

400e a95b400e a95b

400e a95b

400e a95b

26 one values

39 one values

element 0 element 1 element 2 element 3

base element XORed elements

0000 0000

(a) Zero data interferes with extracting data similarity

base base

base const base const

base baseBasic Base + XOR Transfer

Zero Data Remapping

base XOReddata

(b) Key Idea: Swapping the encoding results of two special cases

0000 0000400e a95b 0000 0000

400e a95b400e a95b 4000 0000

26 one values

28 one values

element 0 element 1 element 2 element 3

base element XORed elements

*constant element: 0x4000 0000

400e a95b

4000 0000

(c) The effect of Zero Data Remapping

Figure 5: Base+XOR Transfer with Zero Data Remapping

To avoid the interference from zero valued data elements,
we propose a refined encoding that remaps the encoded
result of a zero data element to a low-weight constant.
In this mechanism, we must ensure that other data is not
encoded to this low-weight constant. Figure 5b shows the
basic operations. During encoding, the input data element is
checked if it is equal to the base element XORed with the
low-weight constant. In this case, the XOR-encoded result
would have ended up being the low-weight constant. Instead,
we make the encoded result equal to the base value. By
swapping the encoded results of these two inputs (zero data
element and the base element ⊕ the constant), we make the
common case of zero data elements cheap, while making
an uncommon case more expensive. We call this Zero Data
Remapping.

Any constant value can potentially be used for this
mechanism. With the goal of reducing 1 values in the
XORed element as much as possible, there are two major
requirements for the constant. First, it should be a low-
weight value with a small number of 1 bits. This is necessary
to make the incremental cost of replacing zero data elements
have low overhead. Second, data elements that are equal to
the base element⊕ the constant should be rare. A constant
like 00000000h, for instance, would preserve 0 values but
would eliminate any benefit in our scheme for repeated non-
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zero data elements (another common case). Similarly, small
constants like 00000001h or 00000004h would make
data elements with small power-of-two offsets susceptible
to sub-optimal encodings. We find that a constant like
40000000h works well.

As shown in Figure 5c, XOR encoding with Zero Data
Remapping only introduces two ‘1’ bits in the results, in-
creasing 1 values from 26 to 28. Considering that original
XOR encoding increases 1 values from 26 to 39 in Figure 5a,
Zero Data Remapping successfully mitigates the interference
from the zero valued data element.

B. Proper Base Size Selection

Matching the base size of the encoding scheme to the
underlying size of the data elements in a transaction can
have a significant effect on the effectiveness of the encoding
scheme. If a base size is not matched to the underlying
data size, two different effects can occur, which reduce the
effectiveness of the encoding.

In particular, if we choose a smaller base size than the
underlying data elements, our XOR encoding does not find
the data similarity, possibly consuming more energy. We
show this effect in Figure 6a. In this example, two 8-byte
similar elements form a 16-byte transaction that are XOR-
encoded with a 4-byte base size. As we see, our mechanism
could not extract the data similarity, failing to introduce any
0 values in the XORed elements. Selecting a proper base size
that is aligned to the underlying data elements (8 bytes in
the example in Figure 6b) successfully introduces the mostly
0 values in the XORed elements.

1cff 1d5a 1cff 1d5a 1cff 1d5e400e a15a

base element XORed elements

400e a15a 5cf1 bc00

400e a15a 5cf1 bc00

400e a15a 5cf1 bc04

400e a15a 5cf1 bc04

4-byte 

base element

similarity in 
8-byte elements

(a) Smaller Base (4 bytes) than Similar Data Chunks (8 bytes)

0000 0000 0000 0004

base element XORed element

400e a15a 5cf1 bc00 400e a15a 5cf1 bc04

400e a15a 5cf1 bc00

8-byte 
base element

(b) The Same Size Base as Similar Data Chunks (8 bytes)

Figure 6: Base+XOR Transfer with different base size

If we choose a larger base size than the underlying data
elements, our mechanism misses opportunities to introduce
more 0 values. Figure 4 shows Transaction0 with re-
peated data patterns every 4 bytes. When using an 8-byte
base size, we can still find significant similarity between the
two 8-byte regions, but we lose the opportunity to exploit
the similarity between the upper and lower 4 bytes of the
8-byte base. This loss in effectiveness is smaller than the
consequences of choosing a base size that is too small, but
it is a significant effect.

There are several possible mechanisms that could identify
the best base size. First, the most intuitive solution is to
encode the data with multiple base sizes and select the
results with the fewest 1 bits. A second potential solution
is periodically profiling a per-page preferred base size and
using the profiled information to encode transactions in the
page. A third solution is selecting the proper base size
for the compute units that use a predefined data structure,
for example, floating-point units. Unfortunately, all these
potential base selection mechanisms require non-trivial over-
head (e.g., similarity check units and storage for base size
information) or are applicable only to the interconnect that
always transfers predefined data structures.

C. Universal Base+XOR Transfer

Instead of explicitly figuring out the proper base size, we
introduce a simple mechanism that is broadly applicable to
any base size, thereby not requiring any a priori information
of the base size. Our mechanism exploits the fact that in a
transaction, if every N-byte element is similar to each other,
then 2N-byte elements are also similar to each other. As
Figure 7a shows, all 2-byte elements in a transaction are
similar to each other (in the first row). If two 2-byte elements
form one 4-byte element (shown in the second row), all 4-
byte elements are also similar to each other. We leverage
this insight to build our mechanism.

3901 3905 3909 390d3903 3907 390b 390f

3901 3903 3905 3907 3909 390b 390d 390f

similar

similar

3901 3903 3905 3907 3909 390b 390d 390f

similar

similarity in 

N-byte elements

similarity in 

2N-byte elements

similarity in 

4N-byte elements

(a) Key Observation: Similarity in 2N-byte element → Similarity in
4N-byte element

(b) Key Idea: XOR Encoding for the base of previous stage

Figure 7: Universal Base+XOR Transfer

Our encoding mechanism consists of multiple steps that
can operate in parallel. Each step takes an N-byte data and
performs the XOR encoding by using half of the data as the
base (i.e., a N/2 base size), generating a N/2-byte base element
and a N/2-byte XORed element. If there exists a repeated
pattern in two N/2-byte elements of the input data, the N/2-
byte XORed element turns out to have mostly 0 values. The
same process is applied to the N/2-byte base element of the
previous step. Our mechanism applies this XOR encoding
for each base size down to the smallest base size output
(e.g., 2 bytes).
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Figure 7b shows how our mechanism works. In the
first step, the 16-byte transaction is divided into two 8-
byte elements. Using these two elements, our mechanism
performs the XOR encoding, which will generate 8 bytes of
the final encoded result. In the next step (the middle row in
Figure 7b), the base structure from the previous step (the left
8-byte data) is divided into two 4-byte elements. Using these
two elements, our mechanism performs the XOR encoding,
producing 4 bytes of the final XOR-encoded result. Our
mechanism continues, performing the same operations, until
generating the left most 2-byte data turns to be base element.

In Figure 8, we demonstrate the encoding process for
two example transactions. Applying our mechanism to a
transaction that consists of eight similar 2-byte elements
(Figure 8a) successfully generates a 2-byte base element and
14 bytes of mostly 0 XOR-encoded elements. Applying our
mechanism to a transaction that consists of four similar 4-
byte elements (Figure 8b) leads to one 4-byte data result
(0x400e 215f) and a 12 bytes of mostly 0 XOR-encoded
elements, which is similar to the result that we would
achieve by performing the 4-byte XOR encoding with the
knowledge of the most suitable base size. Therefore, we call
this 4-byte data the effective base element. Thus, since our
mechanism automatically generates a reasonable encoding
for any effective base element, we call this mechanism
Universal Base+XOR Transfer.

3901 0002 0008 0008 0008 00080004 0004

2-byte 
base element

3901 3903

3901 3903 3905 3907

3901 3903 3905 3907 3909 390b 390d 390fsimilarity in
2-byte element

4-byte

XOR

2-byte

XOR

8-byte

XOR

(a) 2-byte similar element case

4-byte effective

base element

similarity in
4-byte element

4-byte

XOR

2-byte

XOR

8-byte

XOR

400e 215f 0000 0004 0000 00040000 0001

400e a151

400e a151 400e a153

400e a151 400e a153 400e a155 400e a157

(b) 4-byte similar element case

Figure 8: Case study: Universal Base+XOR Transfer

Using Base+XOR Transfer coupled with the two opti-
mizations, we have developed a simple encoding scheme
that can significantly reduce the number of 1 values in the
resulting data. This scheme requires no a priori knowledge
of the data and requires no metadata to be communicated
with the encoded data.

V. SYSTEM CONFIGURATION AND IMPLEMENTATION

Our mechanism is generally applicable to any compute
system that transfers data over a POD I/O interface. We

evaluate the benefits of our mechanisms on a highly parallel
GPU system that integrates a large number of compute units.

A. Evaluated System Configuration

We model an NVIDIA Titan X graphics card based
on NVIDIA’s Pascal architecture [14]. This GPU system
integrates many channels of GDDR5X which utilize a POD
I/O interface. The detailed system configuration is provided
in Table I.

Component Parameters

Compute Units 56 stream multi processors

Last-Level Cache 4 MB in total

Memory System
384 bit total bus, 12 GB GDDR5X
480 GBps total channel bandwidth
4 32-byte sectors per cacheline

GDDR5X

Data Rate (per pin): 10 Gbps
Power Supply: VDD/VDDQ = 1.35 V
Output Driver: RPullUp/RPullDn = 60/40 Ω

Termination: RT = 60 Ω

Table I: Configuration of evaluated GPU system

In this system, transferring a 1 value drives the corre-
sponding wire to 0V , which creates a static current path
over the termination resistor and the pull down transistor. As
shown in Table I, since GDDR5X uses a 60 Ω termination
resistor (RT ) and a pull-down transistor that has 40 Ω of
turn-on resistance, the static current for a 1 value is about
13.5 mA (I = V/R = 1.35V/100Ω). Due to this additional
current for a 1 value, there is a significant energy imbalance
between transferring 1 values and 0 values. Considering that
a GPU system uses very wide bus in DRAM channel, the
additional energy for 1 values is significant (e.g., 432 mA
peak current for 32-bit bus in a GDDR5X chip or 5.2 A
peak current for 384-bit bus in the GPU memory system).

We estimate the overall memory system energy consump-
tion considering this data dependent energy consumption.
For the overall memory system energy estimation, we use
modified versions of the Micron DRAM Power Calcula-
tor [15] and Rambus DRAM Power Calculator [16]. We
report the energy impact of our mechanisms in Section VI-F.

B. Implementation Costs

We designed detailed gate-level implementations of our
proposals and analyzed the additional area, latency, and
energy consumption of the encode and decode logic.
N-byte Base+XOR Transfer. Figure 9a shows an im-
plementation of the 4-byte Base+XOR Transfer encoding
scheme that is applied to 16-byte transactions. As shown in
the right of the figure, the only required change is adding 96
XOR gates (one XOR gate per wire to generate the XORed
elements). Two inputs of the XOR gates are connected to
two wires, one from the original element and the other from
the left 4-byte element. The decoding process is simply
performing the same XOR operation between adjacent 4-
byte elements. The only difference in the decoding scheme
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from the encoding scheme is that an XORed element (e.g.,
the third element) should be decoded with the decoded
values of its base element (e.g., the second element). As
a result, a decoding takes longer time than a encoding.
Alternatively, it is also possible to use a fixed base (e.g., the
first element) for all XOR operations. While this fixed base
scheme is simpler and has lower latency than our proposal,
we observe that using the adjacent element as a base element
shows better energy reduction, due to higher similarity in
adjacent elements. N-byte Base+XOR Transfer can be
easily implemented similarly to the 4-byte Base+XOR
Transfer example.

. . .

32
 b

its

XOR

(32-bit)

XOR

(32-bit)

XOR

(32-bit)
da

ta
ba

se
xo

re
d

da
taby

pa
ss

da
ta

ba
se

xo
re

d
da

ta

da
ta

ba
se

da
ta

da
ta

da
ta

ba
se

ba
se

(a) 4-byte Base+XOR Transfer (16-byte)

. . .

32
 b

its

da
ta

ba
se

XOR

(32-bit)

XOR

(32-bit)

XOR

(32-bit)

da
ta

ba
se

xo
re

d
da

taby
pa

ss

da
ta

ba
se

xo
re

d
da

ta

da
ta

da
ta

da
ta

ba
se

ba
se

(b) Universal Base+XOR Transfer (16-byte)

Figure 9: Implementation details of Base+XOR Transfer

Universal Base+XOR Transfer. While we explained Uni-
versal Base+XOR Transfer as multiple encoding steps in
Section IV-B, those steps operate in parallel. Figure 9b
shows an implementation of Universal Base+XOR Trans-
fer that consists of two stages and is applied to 16-byte
transactions. As the figure shows, the only implementation
difference from N-byte Base+XOR Transfer is organizing
the base elements in an asymmetric way. Due to the fact
that the the left-most values are used as the base element for
several of these operations, elements that are closer to the
left end fan out to more XOR operations, causing some ad-
ditional area due to additional routing. This implementation
can be easily extended to the cases of a different transaction
size (e.g., 32 bytes) and a different number of stages (e.g.,
3 stages).
Zero Data Remapping. The key operation of this mech-
anism is swapping the encoded results of the two special
inputs, i) zero data element and ii) the base element⊕ the
light-weight constant. Figure 10 shows a possible Verilog
pseudocode of our mechanism applied to a 32-bit element.
Our mechanism first determines if the input is a zero data
element by simply performing OR operations with all bits
in the input. If all bits are zero, the output is the constant.
We, then, determine if the input is the same as the result
of the base⊕ the constant. To this end, we leverage the fact
that an XOR operation of two the same values results in a

0 value. Therefore, if the input is the same as the result of
the base⊕ the constant, simply performing XOR operations
with the two data leads to all zero values, which can be
detected by a simple tree of OR operations. If so, the output
is the base element. If the input is not the two special values,
the output is the result of the base ⊕ the input.

in[31 : 0], base[31 : 0], const[31 : 0] = 40000000h

if in[31 : 0] == 0 then
out[31 : 0]⇐ const[31 : 0]

else if in[31 : 0]⊕ (base[31 : 0]⊕ const[31 : 0]) == 0 then
out[31 : 0]⇐ base[31 : 0]

else
out[31 : 0]⇐ in[31 : 0]⊕base[31 : 0]

end if

Figure 10: Zero Data Remapping

System Organization. The encoding/decoding logic is con-
tained entirely within the memory controller on the GPU and
our schemes do not require any modifications to the DRAM
devices. The data is encoded by the memory controller
before being written to DRAM, stored in encoded form in
the DRAM, and is decoded after it has been brought into
the memory controller on a read.

Table II summarizes the area, latency, and energy con-
sumption of our mechanisms by using TSMC 16 nm FinFET
process parameters from [17, 18]. We estimate the worst
case of the energy consumption and encoding/decoding
latency by considering all the possible inputs. The area
estimation includes both additional logic and wires. We
observe that the area overhead is very small (e.g., 2,232 µm2

for both encoding and decoding logic in the most sophis-
ticated mechanism). For the evaluated GPU system, with
twelve 32-bit DRAM channels, the total additional chip area
would be 0.027 mm2 (less than 0.01 % additional die area).
The estimated latency varies from 24 ps to 360 ps based
on the complexity of the mechanisms. However, the most
advanced mechanism (237 ps of the decoding scheme in
Universal Base+XOR Transfer with Zero Data Remapping)
is still short enough to be completed the operation within
one clock cycle of DRAM (e.g., 400 ps clock period in
10 Gbps. GDDR5X provides data at quadruple the clock
frequency). Our encoding/decoding mechanisms consume
very small additional energy (up to 201 fJ) compared to the
overall energy consumption in the memory system, e.g., the
additional 1.82 pJ for transferring a 1 value.

VI. EVALUATION

We evaluate the energy impact of our proposed mecha-
nisms for running both compute and graphics workloads on
a modern GPU system. To this end, we use a GPU simulator
that models the streaming multiprocessors, cache hierarchy,
and DRAM memory system. The simulator consists of a
functional model that includes both graphics and compute
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Mechanism Area Energy Latency Config.
(encode/decode) (µm2) (fJ/32B) (ps)

2-byte XOR 214/214 43/43 24/360
4-byte XOR 289/289 73/73 24/168
8-byte XOR 341/341 97/97 24/72

Universal XOR 355/355 98/98 24/72 3 stage
ZDR 761/761 103/103 165/165 4B base

4-byte XOR+ZDR 1050/1050 176/176 189/333
Universal XOR+ZDR 1116/1116 201/201 189/237 3 stage

Table II: Area, energy, and latency overhead for implement-
ing Base + XOR Transfer to 32-byte transactions

pipelines, and the cycle-accurate timing model. The configu-
ration of the evaluated system is summarized in Table I. We
extract the data value of each transaction that is transferred
to or from the DRAM at the memory controller for 187
compute and graphics workloads.

For compute workloads, we use 106 CUDA applica-
tions from Rodinia [19], Lonestar [20] benchmark suites, and
Exascale workloads [21, 22, 23, 24, 25, 26] that include
CoMD, HPGMG, lulesh, MCB, MiniAMR, and Nekbone.
For graphics workloads, we use 81 applications that include
a suite of popular DirectX games, 3D graphic rendering
benchmarks, and workstation graphics applications.

A. N-Byte Base+XOR Transfer

We evaluate how many 1 values are reduced by using
Base+XOR Transfer with Zero Data Remapping for three
different base sizes (2, 4, and 8 bytes). Figure 11 plots the
number of 1 values for 187 applications, normalized to the
baseline without any mechanism. Applications that show
their normalized 1 values are lower than the baseline (100 %)
get benefits from our mechanism. We categorize applications
into three groups based on the most beneficial base size.
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Figure 11: 2-/4-/8-byte Base+XOR Transfer

We draw three observations. First, each application shows
a different 1 value reduction, due to its own characteristics of
data similarity. Some applications show the largest 1 value
reduction when applying a 2-byte base (the left group),
while others show the best benefit when applying a 4-byte
base (the middle group). Second, most of applications show
1 value reduction when using a proper base size, since the
normalized 1 values of the best beneficial base case are
mostly below the 100 %. Third, in most cases, applying
either a 4-byte base or a 8-byte base provides 1 value

reduction, however, applying a 2-byte base increases the
number of 1 values in many applications. As we explained in
Section IV-B, this is because i) using larger base size than the
similar data structure size leads to losing the opportunities
for better 1 value reduction, but still provides some 1 value
reduction, and ii) using smaller base size than the underlying
data element size leads to generating more 1 values. On
average, 2-/4-/8-byte Base+XOR Transfer reduces 1 values
by 6.5 %/29.7 %/29.6 %, respectively.

B. Universal Base+XOR Transfer

We evaluate the 1 value reduction with Universal
Base+XOR Transfer that generates an effective base ele-
ment and XORed elements without any a priori knowledge
of the repeated pattern size. Figure 12 plots the normalized
1 values of Universal Base+XOR Transfer (red line) and
the best 1 value reduction (black line) among the fixed three
base size cases, shown in Figure 11. Since the red line
closely tracks the black line, Universal Base+XOR Transfer
successfully achieves the best of three base cases, in general.
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Figure 12: Universal Base+XOR Transfer

In some applications, the 1 value reduction in Universal
Base+XOR Transfer is smaller than that of a fixed base
case. This is because N-byte Base+XOR Transfer extracts
the similar data structure between adjacent elements, while
Universal Base+XOR Transfer performs XOR operations
with elements that are longer distances apart. We observe
that two adjacent elements typically show more similari-
ties than two non-adjacent elements which enables better
1 value reduction in Base+XOR Transfer with a proper
data structure. We also observe that Universal Base+XOR
Transfer provides better 1 value reductions in some applica-
tions than the best of N-byte Base+XOR Transfer. These
applications usually operate on different data structures with
different sized elements. By generating the effective base
for any repeated data patterns, universal base mechanism is
able to provide better 1 value reduction than a fixed base
mechanism. On average, Universal Base+XOR Transfer
reduces 1 values by 35.3 %, a much higher reduction than
that of the fixed base mechanisms (e.g., 29.7 % with 4-byte
Base+XOR Transfer).

In Figure 13, we categorize applications based on the
amount of 1 value reduction they experience with the four
mechanisms. Each bar in the figure represents the portion
of applications which normalized 1 values are within a
20 % range. For example, the left most green bar in each
mechanism shows the portion of applications that had the
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Figure 13: Application distribution of 1 value reduction

normalized 1 values in the range of 100 % to 80 % compared
to the baseline.

We make two observations. First, using a larger base
size for fixed Base+XOR Transfer results in fewer ap-
plications that see an increase in 1 values. For example,
4-byte Base+XOR Transfer has fewer applications that
see increased 1 values than 2-byte Base+XOR Transfer. If
only the simplest scheme can be adopted, an 8-byte base
will result in the fewest applications with an increase in
1 values. Second, Universal Base+XOR Transfer enables
i) the fewest applications that see an undesirable increase in
1 values and ii) the largest 1 value reduction on average.

C. Zero Data Remapping

Without Zero Data Remapping (ZDR), our Base+XOR
Transfer scheme and previous work like SILENT [8] can
increase the number of 1 values in applications that have
a large number of zero valued elements. We found that
in more than 20 % of the evaluated applications, greater
than 30 % of transactions contain mixed data, i.e., zero and
non-zero elements interspersed together. ZDR is particularly
important for these transactions. Figure 14 plots the relation-
ship between the ratio of the mixed data transactions and
the number of 1 values with/without ZDR. We observe that
without ZDR, applications having more mixed data show
less benefit in general from our scheme and even experience
undesirable increases in 1 values on average. For example,
applications in which more than 70 % of transactions are
mixed data increase 1 values by 24 % on average without
ZDR. As explained in Section IV-A, ZDR helps to avoid
situations in which already-efficient zero data elements are
encoded into values containing a large number of 1 values.

Overall, we found that without ZDR, a small number of
applications experience a dramatic increase in the number of
1 values, with the worst case application suffering a 100%
increase. Applying ZDR, this worst case application only
sees an 8.4% increase in 1 values. The benefits of ZDR
primarily apply to the subset of applications that have a large
amount of mixed data which do poorly with the baseline
scheme. Overall, applying ZDR reduces the number of
applications that experience an increase in 1 values by 33%,
and reduces the number of additional 1 values by 53.8%.
This illustrates that ZDR is crucial for ensuring that the
negative side effect of XORing the base with zero elements
does not erode the benefits of Base+XOR Transfer.
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Figure 14: The impact of Zero Data Remapping on applica-
tions that have a different partial zero element ratio

D. Base+XOR Transfer vs. Previous Work

In Figure 15, we compare our mechanisms to two previous
energy reduction mechanisms, Data Bus Inversion (DBI) and
a cache-based 1 value reduction mechanism, Bitwise Dif-
ference Encoding (BD-Encoding) [4]. BD-Encoding holds
64 recently transferred 8-byte words in a temporal data
repository and transfers data as a bitwise difference from
the most similar one in the cache. BD-Encoding requires
8 bits of metadata to transfer 8 bytes of data, which includes
the index of the most similar entry in the cache. We study
multiple DBI implementations, dividing a 32-bit channel
into multiple groups of different granularities (e.g., four 1-
byte groups) and applying DBI per group. Since each group
with DBI requires one bit of polarity information, dividing a
channel into more smaller groups can reduce 1 values more,
but with higher overheads for additional polarity metadata.
We study two different organizations of our mechanism, i)
Universal Base+XOR Transfer with ZDR and ii) Universal
Base+XOR Transfer with ZDR followed by N-byte DBI.
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Figure 15: Base+XOR Transfer vs. Previous Works

We first compare our mechanism and DBI. Applying
DBI to smaller size groups reduces more energy-expensive
1 values. For example, 4-byte DBI that requires 1 bit meta-
data per 32-bit bus reduces 1 values by 18.8 %, while 1-byte
DBI that requires 4 bits of metadata per 32-bit bus reduces
1 values by 25.7 %. Our mechanism outperforms these DBI
approaches without any metadata or DRAM-side circuitry,
reducing 1 values by 35.3 %.

Second, we combine our mechanism and DBI by sim-
ply performing both encoding operations. We first apply
Universal Base+XOR Transfer, then, perform DBI on the
resulting encoded value. This hybrid mechanism enables
much more substantial 1 value reductions. For example,
Universal Base+XOR Transfer with 1-byte DBI (requiring
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4 bits of metadata per 32-bit bus) achieves 48.2 % 1 value
reduction compared to the baseline, and 22.5 % more 1 value
reduction compared the 1-byte DBI alone. Combining these
two mechanisms leverages the complementary nature of their
1 value reduction strategies. DBI reduces the number of
one values within a single data element (e.g., limiting the
number of 1 values on a byte to no more than 4). Our
mechanism, on the other hand, leverages the data similarity
between elements in a transaction to reduce the number of
1 values. Furthermore, combining these approaches retains
the important feature of DBI that guarantees no more than
half of the data bits are ever simultaneously an 1 value.

Third, we compare our mechanism and BD-Encoding
that requires 4 bits of metadata per 32-bit bus. Universal
Base+XOR Transfer shows similar 1 value reduction to
BD-Encoding (35.3 % vs. 29.8 %). Our mechanism achieves
this without the metadata and repository for previous trans-
actions required for BD-Encoding. Therefore, our mecha-
nism provides similar energy reduction of DRAM channel
at much lower cost compared to BD-Encoding. Moreover,
considering schemes with the same metadata overhead
(Universal Base+XOR Transfer with 1-byte DBI vs. BD-
Encoding), our mechanism reduces 18.4 % more 1 values.

We observe two major reasons why our mechanism shows
better 1 value reduction. First, BD-Encoding considers that
two data elements are similar when the bitwise difference
is lower than a predetermined threshold (e.g., less than 12-
bit bitwise differences in two data elements), which makes
the mechanism very sensitive to the threshold. For exam-
ple, if there exists 0x00000ffe in the cache repository,
BD-Encoding determines that all 0x00000000 elements
are considered to be similar to 0x00000ffe (since the
bitwise difference is 11 bits), transferring bitwise difference
of these two elements, 0x0000ffe. Second, BD-Encoding
introduces metadata that also introduces additional signals
that often can contain 1 values.

E. Channel Switching Activity Reduction

While our mechanism reduces energy-expensive 1 values,
it also reduces the switching activities (toggles) on the
I/O interface. Our mechanism significantly increases the
probability that any given data bit to be transferred is a
0 value. This also has the effect of increasing the probability
two successive data values to be transferred on the bus are
identical. Figure 16 summarizes the toggle reduction impacts
from different mechanisms. In general, DBI increases the
number of toggles despite the 1 value reductions because
additional toggles are introduced in the added metadata
signals.3 Universal Base+XOR Transfer provides 23.0 %
toggle reduction by itself and 21.0 % applied together with

3 There are two DBI mechanisms, i) one of which reduces the number of
1 values (DBI-DC) and ii) the other of which reduces the number of toggles
(DBI-AC). Since GDDR5/GDDR5X uses DBI-DC, we evaluate the impact
of our mechanism on the POD I/O interface with DBI-DC.

the 1-byte DBI that exists in GDDR5/GDDR5X. Therefore,
our mechanism also reduces data transfer energy by reducing
channel switching activities as well as reducing energy-
expensive 1 values.
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Figure 16: I/O switching activity reduction

F. DRAM Energy Reduction

We evaluate the energy consumption of a GDDR5X-based
memory system. We model the detailed energy consumption
including background energy (e.g., leakage, clock, DLL,
etc.), the row activation energy, and the on-chip/off-chip
data transfer energy. In this evaluation, we assume that the
DRAM bandwidth utilization is 70 % on average. Figure 17
shows the energy reduction using our mechanism, DBI,
and BD-Encoding. Compared to the baseline, Universal
Base+XOR Transfer achieves 5.8 % energy reduction with
no metadata. Combining our mechanism and 1-byte DBI
achieves a 7.1 % energy reduction, which is much bigger
than the energy reduction with 1-byte DBI alone (2.7 %) or
BD-Encoding (4.2 %). These energy savings are delivered
from both reducing the number of 1 values and reducing
the I/O switching activity (toggles).
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Figure 17: Energy reduction in memory system

G. CPU Workload Evaluation

Base+XOR Transfer can be applied without any modifi-
cation in CPUs. We evaluate the impact of our mechanisms
on a CPU system that has a single core, 4-Mbyte last-
level cache, and DDR4-based memory system. As shown in
Figure 18, our mechanism reduces the number of 1 values
in 68 % of the applications and by 12 % on average across
28 applications in SPEC CPU2006. However, these re-
ductions are much smaller than those for GPU applica-
tions. This is mainly because GPU applications have higher
intra-transaction (or intra-cacheline) data similarity for our
scheme to exploit, as shown in Section III-A. Furthermore,
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GPU applications often use much more memory bandwidth
and therefore dissipate higher DRAM power compared to
CPUs, providing a stronger motivation for our proposals.
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Figure 18: Base+XOR Transfer with CPU workloads

VII. RELATED WORK

We reduce the DRAM energy consumption by leveraging
the data similarity in a transaction. In this section, we
describe the prior work related to our proposal.
Data Encoding that Leverages Bitwise Differences in
Adjacent Data. SILENT [8] transfers the bitwise difference
between adjacent words on a serial interface. By filtering
out similar data, SILENT reduces switching activity and
1 values. However, as shown in Sections IV and VI-A,
without a priori knowledge of the repeated data pattern size
and a way to handle 0 data words, it is difficult to achieve the
best energy efficiency. Our work highlights the importance
of these considerations and proposes appropriate low cost
solutions, improving upon SILENT.

BD-Encoding [4] reduces the energy consumption on the
DRAM interface by transferring the bitwise differences from
the most similar data that was recently transferred and stored
in a cache. This work is similar to our work in terms of
extracting similar data to transfer the same information with
fewer number of 1s. However, central to the BD-Encoding
mechanism is a caching scheme which leads to high im-
plementation overhead and complexity because it requires
additional repositories in both the DRAM and in the memory
controller to cache previously transmitted data words, com-
parison logic between requested data and all the cached data,
and cache management logic. Our mechanism achieves the
same goal with significantly lower implementation cost since
it does not require any metadata. Of particular importance is
the fact that, unlike BD-encoding, our mechanism needs no
changes in the DRAM. We also compare our mechanism to
BD-Encoding quantitatively in Section VI-D and show that
our mechanism outperforms BD-Encoding when executing
many compute and graphics workloads.
Data Encoding Techniques Leveraging Data Equality.
Several previously proposed techniques [27, 28, 29, 30, 31,
32, 33, 34] store specific data in a cache repository and
transfer an energy-efficient encoded form of the data when
a transaction is matched to the cached data (e.g., sending
the index information of matching data in the cache). Our
mechanism is different from this approach in several aspects.

First, our mechanism leverages data similarity, while these
approaches seek to exploit data equality. Therefore, even
when there are small differences between subsequent data
words, our mechanism can exploit the common portion of
the data, reducing I/O energy. Second, we leverage the
similarity within a transaction (e.g., a sector). Therefore, our
mechanism does not require any temporal repository, meta-
data, and comparison logic between the current transaction
and previously transferred data. Therefore, our mechanism
has much lower implementation overhead. Furthermore,
since our encoding granularity is the same as data access
granularity (e.g., a sector or a cacheline), memories can store
the encoded form of the data. Therefore, our mechanism
does not require any changes in DRAM. Without any change
on DRAM, our mechanism also can be synergistically com-
bined with DBI that already exists in modern Graphics DDR
DRAMs.
Reducing Overhead for Transferring Metadata. MiL [3]
proposes a low cost implementation of Limited-Weight
coding [35] in DRAM channel. By exploiting the under-
utilized DRAM channel bandwidth for transferring meta-
data, MiL mitigates the metadata overhead. Our mechanism
is orthogonal to MiL and could be combined together for
better energy efficiency in DRAM channel.
Cache Compression. Many compression mechanisms [6,
7, 10, 11, 12, 13, 36, 37, 38, 39, 40] enable i) storing
more data in on-chip cache or memory (capacity benefit) and
ii) transferring more data through interconnects (bandwidth
benefit). While those cache compression mechanisms exploit
the data similarity in a cacheline, which we also leverage
in our mechanism, they differ in two ways. First, our
mechanism focuses on reducing 1 values for reducing data
transfer energy, while the compression mechanisms aim to
enable capacity and bandwidth benefits. Thus, the achieved
benefits are different. Prior work observed [41] that applying
compression mechanisms does not provide energy efficiency
benefits in general. Second, our mechanism can simply
be applied for all data transactions, while compression
mechanisms first need to determine if data structures (e.g.,
cacheline) can be compressed, and then compress only data
structures that are eligible for their mechanisms. Thus, our
mechanism is much simpler and can be implemented with
much lower overhead.

VIII. CONCLUSION

The energy consumption of high speed DRAM interfaces
is a significant issue as future GPU systems continue to
increase bandwidth. In this work, we focus on reducing
the data transfer energy in the terminated, POD-based high
speed DRAM I/O interfaces that consume more energy
to transfer 1 values than 0 values. Our proposed encod-
ing scheme exploits the intrinsic data similarity commonly
found in GPU DRAM transactions, and, with our Zero
Data Remapping and Universal Base techniques, is able
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to significantly reduce the number of energy-expensive 1
bits transferred between the DRAM and the GPU for a
broad range of GPU compute and graphics applications. Our
proposed mechanism requires no metadata and very little
area, energy, or delay. As a result, our approach can be easily
used in future systems with existing DRAM devices. In the
system we evaluated, our scheme applied in conjunction with
the existing DBI scheme of GDDR5X, saves an additional
4.4 % of the memory system energy with less than 0.01 %
area overhead for the encode/decode logic on the GPU.

While not the primary objective of our scheme, we also
show that it is effective at reducing the toggle rate. Thus,
our low-overhead approach may prove useful to save energy
for a range of other non-terminated interconnects in which
power is dominated by the dynamic capacitive switching
effects. The current High-Bandwidth Memory (HBM) inter-
face and large on-chip interconnect buses are potential ap-
plications. Adapting this technique to target toggle reduction
and applying it to these other domains remains promising
future work.
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