Staged Reads : Mitigating the Impact of DRAM Writes on DRAM Reads *

Niladrish Chatterjee
University of Utah
nil@cs.utah.edu

Al Davis
University of Utah
ald @cs.utah.edu

Abstract

Main memory latencies have always been a concern for
system performance. Given that reads are on the criti-
cal path for CPU progress, reads must be prioritized over
writes. However, writes must be eventually processed and
they often delay pending reads. In fact, a single channel in
the main memory system offers almost no parallelism be-
tween reads and writes. This is because a single off-chip
memory bus is shared by reads and writes and the direc-
tion of the bus has to be explicitly turned around when
switching from writes to reads. This is an expensive op-
eration and its cost is amortized by carrying out a burst
of writes or reads every time the bus direction is switched.
As a result, no reads can be processed while a memory
channel is busy servicing writes. This paper proposes a
novel mechanism to boost read-write parallelism and per-
form useful components of read operations even when the
memory system is busy performing writes. If some of the
banks are busy servicing writes, we start issuing reads to
the other idle banks. The results of these reads are stored
in a few registers near the memory chip’s I/0 pads. These
results are quickly returned immediately following the bus
turnaround. The process is referred to as a Staged Read be-
cause it decouples a single read operation into two stages,
with the first step being performed in parallel with writes.
This innovation can also be viewed as a form of prefetch
that is internal to a memory chip. The proposed tech-
nique works best when there is bank imbalance in the write
stream. We also introduce a write scheduling algorithm
that artificially creates bank imbalance and allows useful
read operations to be performed during the write drain.
Across a suite of memory-intensive workloads, we show
that Staged Reads can boost throughput by up to 33% (av-
erage 7%) with an average DRAM access latency improve-
ment of 17%, while incurring a very small cost (0.25%) in
terms of memory chip area. The throughput improvements
are even greater when considering write-intensive work-
loads (average 11%) or future systems (average 12%).

*This work was supported in parts by NSF grants CCF-0811249, CCF-
0916436, NSF CAREER award CCF-0545959, HP, and the University of
Utah.

Naveen Muralimanohar
HP Labs
naveen.muralimanohar@hp.com

Rajeev Balasubramonian
University of Utah
rajeev @cs.utah.edu

Norman P. Jouppi
HP Labs
norm.jouppi @hp.com

1 Introduction

Main memory latencies have always been a major per-
formance bottleneck for high-end systems. This bottleneck
is expected to grow in the future as more cores on a chip
must be fed with data. Already, many studies [11,26] have
shown the large contribution of queuing delays to overall
memory latency. A number of studies have focused on
memory scheduling and have tried to optimize throughput
and fairness [11,18,21,26,29]. However, only a few op-
timizations have targeted writes; for example, the Eager
Writeback optimization [16] tries to scatter writes so that
write activity does not coincide with read activity, and the
Virtual Write Queue optimization [37] combines memory
scheduling and cache replacement policies to create a long
burst of writes with high row buffer hit rates.

Generally, read operations are given higher priority than
writes. When the memory system is servicing reads, the
DIMMs drive the off-chip data bus and data is propagated
from the DIMMs to the processor. Since writes are not on
the critical path for program execution, they are buffered at
the processor’s memory controller. When the write buffer
is nearly full (reaches a high water mark), writes have to be
drained. The data bus is turned around so that the proces-
sor is now the data bus driver and data is propagated from
the processor to the DIMMs. This bus turnaround delay
(tWTR) has been of the order of 7.5 ns for multiple DDR
generations [14,20,37]. Frequent bus turnarounds add
turnaround latency and cause bus underutilization which
eventually impacts queuing delay. Therefore, to amortize
the cost of bus turnaround, a number of writes are drained
in a single batch until a low water mark is reached. During
this time, reads have no option but to wait at the mem-
ory controller; the uni-directional nature of the bus pre-
vents reads from opportunistically reading data out of idle
banks. Thus, modern main memory systems offer nearly
zero read-write parallelism within a single channel.

This paper attempts an optimization that allows reads
to perform opportunistic prefetches while writes are being
serviced. This is not a form of speculation; the read op-
eration is simply being decoupled into two stages and the
stage that does not require the data bus is being performed
in tandem with writes. We refer to this optimization as a
Staged Read. The two stages are coupled via registers near
the memory chip’s I/O pads that store the prefetched cache

line. This not only minimizes the latency for the more crit-
ical second stage (the second stage does not incur delay for
memory chip global wire traversal), but is also less disrup-
tive to memory chip design. Prior work [42] has identified
the I/O pad area as being most amenable to change and that
area already accommodates some registers that help with
scheduling.

With the proposed optimization, while writes are be-
ing serviced at a few banks, other banks can perform the
first stage of read operations. As many prefetches can
be performed as the prefetch registers provided at the I/O
pads. After the bus is turned around to service reads, these
prefetched results are quickly returned in the subsequent
cycles without any idling. The Staged Read optimization
is most effective when only a few banks are busy perform-
ing writes. We therefore modify the write scheduling algo-
rithm to force bank imbalance and create opportunities for
Staged Reads. This ensures that the memory system is do-
ing useful read work even when it is busy handling writes.

Such read-write parallelism becomes even more impor-
tant in future write-constrained systems when (i) writes
are more frequent in chipkill systems [41,45], (ii) writes
take longer (because of new NVM cells [22,33]), (iii)
turnaround delays are more significant [37]. Our results
show an average improvement of 7% in throughput for our
baseline modern system (along with an average DRAM ac-
cess latency reduction of 17%) and this improvement can
grow to 12% in future systems. Applications that are write-
intensive (about half of the simulated benchmarks suite)
show a 11% improvement in throughput with our innova-
tion.

2 Background & Motivation
2.1 Main Memory Background

The main memory system is composed of multiple
channels (buses), each having one or more DIMMs. For
most of this study, we will assume that the DIMMs contain
multiple DRAM chips, although, the proposed design will
apply for other memory technologies as well. When ser-
vicing a cache line request, a number of DRAM chips in
a rank work in unison. Each rank is itself partitioned into
multiple banks, each capable of servicing requests in par-
allel. Ranks and banks enable memory-level parallelism,
although, each data transfer is eventually serialized on the
memory bus. The most recently accessed row of a bank
can be retained in a row buffer, which is simply a row of
sense-amps associated with each array. The row is then
considered “open”. If subsequent accesses deal with cache
lines in an open row (a row buffer hit), they can be serviced
sooner and more efficiently.

A memory chip is organized into many banks; each
bank is organized into many arrays. The I/O pads for a chip
are placed centrally on a memory chip [42]. From here, re-
quests and data are propagated via tree-like interconnects
to individual arrays involved in an access. To maximize
density, the arrays have a very regular layout and are sized
to be large. When a read request is issued, the bitlines
for the corresponding row must be first PRECHARGED
(if they haven’t already been previously precharged). An
ACTIVATE command is then issued to read the contents

of a row into the row buffer. There is significant over-
fetch in this stage: to service a single 64 byte cache line
request, about 8 KB of data is read into a row buffer. It
is prohibitively expensive to ship this overfetched data on
global wires, so the row buffer is associated with the ar-
rays themselves. Finally, a column-select or CAS com-
mand is issued that selects a particular cache line from the
row buffer and communicates it via global wires to the I/O
pads. In the subsequent cycles, the cache line is transmit-
ted to the processor over the off-chip memory bus. Each
of these three major components (PRECHARGE, ACTI-
VATE, CAS) take up roughly equal amounts of time, ap-
proximately 13 ns each in modern DDR3 systems [7], and
the data transfer takes about 10 ns.

The memory scheduler has to consider resource avail-
ability and several timing constraints when issuing com-
mands. Generally, the memory scheduler prioritizes reads
over writes, accesses to open rows, and older requests over
younger ones. DRAM writes are generated as a result of
write-back operations from the LLC. Since writes are not
on the processor’s critical path, the memory-controller is
not required to complete the write operation immediately
and buffers the data in a write queue. One of the many tim-
ing constraints is the write turnaround delay (tWTR) that is
incurred every time the bus changes direction when switch-
ing from a write to a read. Writes and reads are generally
issued in bursts to amortize this delay overhead. Writes are
buffered until the write queue reaches a high water mark (or
there are no pending reads); the bus is then turned around
and writes are drained until a low water mark is reached.

2.2 Simulation Methodology

I Processor I
ISA UltraSPARC IIT ISA
CMP size and Core Freq. 16-core, 3.2 GHz
Re-Order-Buffer 64 entry
Fetch, Dispatch, Maximum
Execute, and Retire 4 per cycle

I Cache Hierarchy I

L1 I-cache 32KB/2-way, private, 1-cycle
L1 D-cache 32KB/2-way, private, 1-cycle
L2 Cache 4MB/64B/8-way, shared, 10-cycle
Coherence Protocol Snooping MESI
I DRAM Parameters I
DRAM MT41J128M8 DDR3-800 [7],

8 banks/device
16384 rows/bank, x8 part
2 64-bit Channels
1 DIMM/Channel
(unbuffered, non-ECC)
2 Ranks/DIMM, 8 devices/Rank

Device Paramters

DRAM
Configuration

Row-Buffer Size 8KB per bank
Active row-buffers per DIMM 8
Total DRAM Capacity 4GB
DRAM Bus Frequency 1600MHz
DRAM Read Queue 48 entries per channel
DRAM Write Queue Size 48 entries per channel
High/Low Watermarks 32/16

Table 1. Simulator parameters.

We use the Wind River Simics [4,24] simulation plat-
form for our study. Table 1 details the salient features of the
simulated processor and memory hierarchy. We model an
out-of-order processor using Simics’ ooo-micro-arch mod-

ule and use a heavily modified trans-staller module for the
DRAM/PCM simulator. The DRAM simulator closely fol-
lows the model described by Gries in [7] and shares fea-
tures with the DRAMSim framework [43].

In this work, we model a modest multi-core (16 core)
system with two channels to limit simulation time. The
memory controller models a First-Ready-First-Come-First-
Served (FR-FCFS) scheduling policy and models the tim-
ing parameters described in Table 2. The interplay of these
timing parameters is crucial for evaluating DRAM bank
management as maintaining the restrictions imposed by the
parameters will significantly impact bank usage [20]. The
parameters tRAS, tRRD, and tFAW are essential because
they impose restrictions on how frequently accesses can be
made to the same bank (or same rank) if the accesses are
not row hits. In our simulator, our bank usage model ad-
heres to these constraints.

Parameter | DRAM /PCM Parameter | DRAM /PCM
tRCD 13.5ns / 55ns tCAS 13.5ns
tRP 13.5ns tWR 13.5ns / 125ns
tRAS 36ns / 55ns tRRD 7.5ns
tRTRS 2 Bus Cycles tFAW 40ns
tWTR 7.5ns tCWD 6.5ns

Table 2. Timing Parameters [7,22]

The DRAM device model and timing parameters were
derived from [7,20]. We model multiple ranks per mem-
ory channel, each rank has several banks (each with its own
row-buffer). The data and address bus models are accu-
rately designed to simulate contention and bus turnaround
delays. The DRAM pipeline model is equipped to handle
both reads and writes. In the baseline model, writes are en-
queued in the write queue on arrival and the write queue
gets drained by a specific amount upon reaching a high
water mark. The simulator’s command scheduling mecha-
nism can overlap commands to different banks (and ranks)
to take maximum advantage of the bank level parallelism
in the access stream.

DRAM address mapping parameters for our platform
(i.e., number of rows/columns/banks) were adopted from
the Micron data sheet [7] and the open row address map-
ping policy from [20] is used in the baseline. We use this
address mapping scheme because this results in the best
performing baseline on average when compared to other
commonly used address interleaving schemes [20, 43].

Our techniques are evaluated with full system simu-
lation of a wide array of memory-intensive benchmarks.
We use multithreaded workloads (each core running 1
thread) from the PARSEC [13] (canneal, fluidanimate),
OpenMP NAS Parallel Benchmark [12] (cg, is, ep, lu, mg,
sp) and SPECJVM [9] (lu.large, sorlarge, sparse.large,
derby) suites along with the STREAM [3] benchmark.
We also run multiprogrammed workloads from the SPEC
CPU 2006 suite (bzip2, dealll, gromacs, gobmk, hm-
mer; leslie3d, libquantum, omnetpp, perlbench, soplex and
xalancbmk). We selected applications from these bench-
mark suites that exhibited last level cache MPKI greater
than 2 and could work with a total 4 GB of main memory.
Each of these single threaded workloads are run on a sin-
gle core - so essentially each workload is comprised of 16
copies of the benchmark running on 16 cores. We also run

21

5 HBaseline "Ideal mRDONLY

219

(=]

=]

o 17

<

=

.51.5

[}

N

T 13

£

S

o 11

= ol el |
oo HHNHHHRNNNNNHNHRARARANANNN 1
TF OV 5888 §F § £885 5é5g 8

© L8 ¥ T 5789 8% @
$ S < T4 F
& = a

Figure 1. Room For Performance Improve-
ment

a workload designated as specmix which consists of the
following single threaded SPEC CPU 2006 applications :
bzip2, bwaves, milc, leslie3d, soplex, sjeng, libquantum,
gobmk. We chose to model cache space per core (4 MB for
16 cores) and memory channels per core (2 channels for 16
cores) that are slightly lower than those in modern systems.
This allows us to create the memory pressure per channel
that may be representative of a future many-core proces-
sor without incurring the high simulation times of such a
many-core processor.

For multi-threaded applications, we start simulations at
the beginning of the parallel-region/region-of-interest of
the application, whereas for the multiprogrammed SPEC
benchmarks, we fast forward the simulation by 2 billion
instructions on each core before taking measurements. We
run the simulations for a total of 1 million DRAM read
accesses after warming up each core for 5 million cycles.
One million DRAM read accesses correspond to roughly
270 million program instructions on average. For compar-
ing the effectiveness of the proposed schemes, we use the
total system throughput defined as
> (IPCYy wred IPCE,) Where IPCY, s the IPC
of program i in a multi-core setting. IPC?, s the IPC
of program ¢ on a stand-alone single-core system with the
same memory system.

2.3 Motivational Results

We start by characterizing the impact of writes on over-
all performance. Figure 1 shows normalized IPC results for
a few different memory system models. The left-most bar
represents the baseline model with write queue high/low
water marks of 32/16. The right-most bar RDONLY rep-
resents a model where writes take up zero latency and im-
pose zero constraints on other operations. This represents
an upper bound on performance that is clearly unattainable,
but shows that write handling impacts system performance
by 36% on average for our memory-intensive programs.
The bar in the middle represents an oracular scheme that is
more realistic and closer to the spirit of the Staged Read op-
timization. It assumes that while writes are being serviced,
all pending reads can be somehow prefetched (regardless
of bank conflicts), and these prefetched values can be re-
turned in successive cycles following the bus turnaround.
This bar is referred to as Ideal in the rest of the paper and
shows room for a 13% average improvement.

200
M Queuing Delay ' Core Access
% Addr Transfer M Data Transfer

800

700

600
500
400

300

200
0

Ideal Stalled Reads Ideal All Reads
Baseline Stalled Reads Baseline All Reads

Figure 2. DRAM Latency Breakdown

Figure 2 shows the break-up of the DRAM access laten-
cies of the baseline and the Ideal cases. On the left of the
graph, the two bars show the average latencies encountered
by reads that have to wait for the write-queue to drain. By
finishing the bank access of the reads in parallel with the
writes, the Ideal configuration can substantially lower the
queuing delay, showing that ramping up the read-pipeline
after the write-to-read turnaround is inefficient in the base-
line. The impact of this speed-up is noticed in the reduced
overall queuing delay for all reads in the system as shown
in the two right-most bars in Figure 2.

3 Staged Reads

3.1 Proposed Memory Access Pipeline
Baseline Scheduling. We assume a baseline scheduling
process that is already heavily optimized. When the write
queue is draining, we first schedule row buffer hits when
possible and prioritize older writes otherwise, while maxi-
mizing bank-level parallelism. For most of the write drain
process, reads are not issued. As we near the end of the
write drain process, as banks are released after their last
write, we start issuing PRECHARGE, ACTIVATE, and
CAS for the upcoming reads. These are scheduled such
that the data is ready for transfer on the bus immediately
after the bus is turned around. The pipeline is shown in
Figure 3a. Note how the operations for READ-5 begin be-
fore the bus is turned around (shown in red by tWTR) and
the data transfer for READ-5 happens immediately after
the tWTR phase.

Optimization Opportunity. The key to the Staged Read
optimization is that there are bus idle slots soon after the
bus starts servicing reads (right after data transfer 7 in Fig-
ure 3a), and bank idleness when servicing writes (Bank
2 in Figure 3a). Bus idleness when servicing reads hap-
pens when the reads conflict for the same banks (Reads-6,
9, 11 all conflict for Bank 2). These idle bus slots could
have been filled if some of the reads for Bank 2 could have
been prefetched during Bank 2’s idle time during the write
phase. The baseline scheduling policy can already start is-
suing up to one read per bank before the bus turnaround
happens (for example, Read-5, 6, 7 in Figure 3a). Thus,
each bank already does some limited prefetch, whereby
the bank access latency of some reads are hidden, with the
prefetched lines remaining in the bank’s row buffer. The
Staged Read optimization is intended to provide prefetch
beyond this single read per bank.

DRAM Latency (CPU cycles)

Timing with Staged Reads. Figure 3b shows how Reads-
6,9, 11 for Bank 2 (and all other reads except for Bank 1
reads) are moved further to the left. As soon as a bank is
done servicing writes, it starts to service reads. If the read
finishes before the bus is turned around, the resulting cache
line is saved in a Staged Read register near the 10 pads
(shown by the SR box in Figure 3b). After the bus is turned
around, data blocks are either returned via the normal pro-
cess (i.e., from the sense amplifier row-buffer through a
traditional column-read command) or from Staged Read
registers. As seen in Figure 3b, the bus is kept busy for
a number of cycles following the turnaround. Many stud-
ies, including ours, show that bank conflicts are the source
of bus idle cycles and consequently long queuing delays.
Hence, such prefetch operations have a favorable impact
on the latency of many subsequent reads.

3.2 Staged Read Implementation

Organization and Overheads of Staged Read Registers.
As our results show later, most programs do well with
16/32 Staged Read registers. Assuming 64 byte cache
lines spread across a rank of eight chips, this corresponds
to a storage overhead of only 128/256 bytes per DRAM
chip. This is much more efficient than prior proposals that
have advocated the use of row buffer caches within DRAM
chips [15,34]. The proposed optimization is much less in-
vasive than row buffer caches for several reasons. First,
row buffer cache entries retain entire rows, each about
8 KB in size (this is the rank or DIMM level row-buffer,
each constituent chip in a rank has a 1KB row-buffer). Sec-
ond, if row buffer caches are placed centrally near the 10
pads, an enormous amount of overfetch energy and latency
is incurred in moving the entire row to the central row
buffer cache. If row buffer caches are distributed among
arrays, the area and layout of highly optimized arrays is
impacted. DRAM chips employ a limited number of metal
layers and it is a challenge to introduce a latch or SRAM
structure for the row buffer cache directly adjacent to the
arrays themselves. Third, row buffer caches are speculative
— entries are retained in the hope that future accesses will
reuse data in these entries. The Staged Read optimization
does not suffer from any of these problems. The registers
only store the specific cache line that will be requested in
the near future. The registers can be located centrally near
the 10 pads and be shared by all banks as shown in the
physical floorplan depicted in Figure 4a. This is feasible
because their overall capacity is small and no additional
data (compared to the baseline) is being shipped across
global wires to the 10 pads. Thus, the prefetch does not
impact overfetch energy on a DRAM chip and the only en-
ergy penalty is the cost of reading data in and out of Staged
Read registers. The proposal also does not impact the lay-
out of the dense array structures, which represent the bulk
of the memory chip area footprint. The IO pad area of a
DRAM chip occupies a central strip on the DRAM chip. It
contains an IO gating structure that is shared by all banks
and by reads and writes. In order to promote read-write
parallelism with Staged Reads, the Staged Read registers
must be placed directly before the on-chip global wires for
data reach the IO gating structure. It is well-known that
changes to a DRAM chip must be extremely cost sensitive.

WRITE Q DRAIN WQ Drain Ends

Time

—_
| WRITEZ | [READS5! | READS
[WRITE3 [WRITE 4
[READ6 | READ9 | READ 11

[WRITE 2] [READ7 | READ 10 |

@

(a) Baseline behavior for reads and writes.

WRITE Q DRAIN

WQ Drain Ends
Time |
—

E -Staged Reads
|

_ READ 5 \EIREADS E

|
_é
[READ6 | READ? [[READ 11 |

H B B
IWRITEZN] READ9 EREADIO |
DATA

(4 [R e 557 [s 110

|

(b) Staged Read behavior for reads and writes.

Figure 3. Timing for reads and writes with and without the Staged Read optimization.

Vogelsang [42] points out that changes to a DRAM chip are
most costly when instituted in the bitline sense-amplifier
stripe, followed by in the local wordline driver stripe, then
in the column logic, and finally in the row logic and center
stripe. We are therefore limiting our modifications to the
least invasive portion of the DRAM chip.

Area Overhead. At a 32 nm process, a 256 byte regis-
ter file (corresponding to 32 staged read registers) requires
1000 sq. microns [25]. Most of the overhead can be at-
tributed to a new channel that must be implemented be-
tween each bank and the staged read register pool as shown
in Figure 4b. DDR3 has a burst length of eight, meaning
that each bank within an x8 device will be sending 64 bits
of data to the I/O pads. As DRAM core frequency is less
than off-chip DDR bus frequency, to sustain high band-
width, all the 64 bits are sent from a bank to the I/O pads
in parallel. This data is then serialized and sent 8 bits at a
time through the DDR bus. For a wire pitch of 2.5F (where
F is the feature size), a channel with 64 wires will have
a pitch of 5.1 microns. Even after considering the over-
head of eight such channels, for eight banks connected to
the staged register through a mux, the net area overhead is
approximately less than 0.25% in a 50 sq. mm DRAM de-
vice. Note that DRAM layout is heavily optimized for area,
and the actual overhead can deviate slightly from the above
based on how transistors are laid and wire pitch employed
for buses and staged registers.

Effect on Regular Reads. With our proposed implementa-
tion, after a row is activated and brought into the row-buffer
and a cache-line is read from it, it has to choose one of two
paths, i.e., either the regular bus to the I/O pins or the bus
that feeds into the Staged Read registers. As shown in Fig-
ure 4b, this is accomplished by a simple de-multiplexer to
choose between one of the two paths which introduces a
1FO4 gate delay to every read (regular and staged). How-
ever this is less than 1% of the DRAM read latency and
hence has negligible impact on the performance of non-
staged reads.

New Memory Commands. The results in a Staged Read
register must be accessed with a new low latency instruc-
tion. In addition to the conventional CAS instruction, we
now have CAS-SR and SR-Read instructions. For Staged
Reads, the CAS-SR brings a specified cache line to a spec-

ified Staged Read register. The SR-Read moves the con-
tents of the specified Staged Read register to the processor.
Assuming a common pool of Staged Read registers that
are shared by all banks, both new instructions must specify
a few bits to identify the Staged-Read register being han-
dled. The memory controller must track in-progress reads
and their corresponding Staged Read registers. The ad-
dress/command bus is never oversubscribed because each
cmd/address transfer is a single cycle operation compared
to a 4 cycle data burst and we observe that the address bus
has an average utilization of 15% in the baseline. In the
baseline, a CAS command is accompanied by a single ad-
dress transfer (column address). For staged reads, this is
replaced by a CAS-SR command and two address trans-
fers (column address and destination SR register-id) and a
SR-Read command accompanied by a source SR register-
id at the end of the WQ drain. The increased activity on
the address/command bus while performing Staged Reads
pushes the utilization up to 24%.

Implementability. A sign that such a proposal is imple-
mentable is the fact that some high-performance DRAM
chips have introduced buffering at the IO pads [5,20].
Since the IO gating structure is shared by reads and
writes and since reads can begin only after the last write
has moved past the IO gating structure, Rambus Direct
RDRAM devices introduced a write buffer at the IO pads
so that the incoming data could be quickly buffered and
the IO gating structure can be relinquished sooner for use
by reads [20]. Our optimization is similar in structure, but
the logical behavior is very different. In Rambus devices,
the buffering is happening for writes on their way in so
they can get out of the way of important reads. In our
Staged Read optimization, buffering is happening for reads
on their way out so they can get out of the way of an on-
going write burst.

Targeting Niche Markets. Given that commodity DRAM
chips are highly cost-constrained, there is a possibility that
such innovations, in spite of their minimal cost impact, may
be rejected for the high-volume commodity market. How-
ever, there are several DRAM memory products that are
produced for niche markets where either performance or
energy is given a higher priority than cost. Such mem-
ory products may either be used in supercomputer or dat-

DRAM Array

Row Logic

Column Logic

1/0 Pad
Center Stripe

SR Registers

(a) Floorplan Of DRAM Chip.

CENTER STRIPE

SMUX_~
64

SR Register Pool

: 64 ¥5 Global RD/WR I/0 Bus
: 6

. | Write Drivers & Data Interface

K 8

8% 1I0 PINS

(b) Logical Organization (SR overhead circuitry is
shown in red and greeen).

Figure 4. Organization of Staged Read Registers

acenter settings, or in the mobile market. Samsung’s LP-
DRAM [8, 10] is an example of a low-power chip and Mi-
cron’s RLDRAM [6] is an example of a high-performance
memory chip. It is expected that the marketplace for such
niche DRAM products might grow as the memory hier-
archy starts to incorporate multiple memory technologies
(DRAM, eDRAM, PCM, STT-RAM, Memiristors, etc.). In
such hybrid memory hierarchies, the focus on cost may
shift to the PCM sub-system, while the DRAM sub-system
may be expected to provide low latency with innovations
such as Staged Reads. Recent papers [2,40,44] also ad-
vocate the use of a 3D stack of memory chips and a logic
die. The interface die can be used for many auxiliary ac-
tivities such as scheduling, refresh, wear leveling, interface
with photonics, row buffer caching, etc. If such a design
approach becomes popular, Staged Read registers could be
placed on the logic die, thus further minimizing their im-
pact on commodity DRAM chip layouts.

3.3 Exploiting Staged Reads - Memory
Scheduler

From the description in Section 3.2, we see that for
staged reads to be beneficial, there have to be enough op-
portunities for the controller to schedule staged reads to
idle banks. The opportunity is high if there are some
banks that are not targeted by the current write stream and
those same banks are targeted by the current pending reads.
While we see in Section 4 that such opportunities already
exist in varying amounts for different benchmarks, we de-
vise a memory scheduler policy that actively creates such
bank imbalance. This best ensures that useful read work is
performed during every write drain phase.

The write scheduler first orders all banks based on the
simple metric: pending writes - pending reads. Banks are
picked in order from this list to construct a set of writes
that, once drained, will help the write queue reach its low
water mark. Thus, we are draining writes to banks that
have many pending writes; banks that have many pending
reads are being kept idle. With the above scheduling policy,
referred to as the Write Imbalance (WIMB) scheduler, dur-
ing every write drain phase, a bank will roughly alternate
between primarily handling writes or primarily handling
Staged Read operations. For example, in a 4-bank system,

in one write drain phase, a number of writes may be sent
to banks 0 and 1, while banks 2 and 3 are busy handling
staged reads. In the next write drain phase, banks 2 and
3 are favored for write drains (because their pending write
queue has grown), while banks 0 and 1 may handle staged
reads.

4 Evaluation
4.1 Results

In this section, we analyze the performance impact of
our innovation and also present a sensitivity analysis of
staged reads. We present results for the following differ-
ent configurations.

e Baseline : These experiments model the baseline
DRAM pipeline and memory controller described in
Section 2.2 (Table 1) . The memory controller has
a 48 element write queue (for each channel) which is
drained once it reaches a high water mark of 32, un-
til the occupancy drops to 16. In the baseline model,
there is no provision for staged reads, which means
that following a column-read command, the data is
read out from the sense amplifiers and sent out over
the I/O pins.

e SR_X: These configurations refer to systems that con-
sist of DRAM chips and controllers that are, at a max-
imum, equipped to handle X staged read requests per
rank. The timing specifications for staged reads are
as described in Section 3. We consider the following
values of X : 16, 32, and infinite.

e SR 32+WIMB : This refers to the configuration
where the memory controller’s write-scheduling pol-
icy is modified to direct writes at a small subset of
banks in a rank. This exposes more free banks that
can be used by the staged read mechanism.

e Ideal : As described earlier in Section 2.3, we also
show a bar for the Ideal case as a reference. The ideal
case assumes that all pending reads can be prefetched
into an infinite set of Staged Read registers while they
wait for a write drain cycle to finish.

The key difference between SR_Inf and Ideal is that

SR_Inf continues to faithfully model bank conflicts and
other timing constraints. So some pending reads in SR_Inf

800

3 mBaseline MSR_16 ' SR _32 MSR_Inf EMSR_32+WIMB ¥ Ideal
E‘ 700
o 600
o]
o 500
5]
- 400
[$]
o 300
2
3]
< 200
= 100
=
0
[a] s - S A% > X . X e >
5§5§§\-s£$5§@$§\$?‘?§§’$§’,§’$,3’$ e
¥ F ¢ g & § F F ¢ F ¥ 7 S S & § § 5 £ &
S & F < §F & £ & S g F 2 £ § ¢ ° &
< g § ° © = S 3
A (/)Q I §
Figure 5. DRAM Latency Impact of Staged Reads
1.4 .
5 13 H Baseline BSR_16 ' SR _32 mSR_Inf BSR_32+WIMB " Ideal
3 1
S 13
>
© 1.25
b
= 12
T 115
N
= 1.1
€ 105
(=]
2 ptowawadanawad ol adan i dll ¢ ‘“ ‘“ ‘
0.95
S . S v > X K2 x > @9 >
F F $§FF T gFs g g Foers g sd s &
s F & ¢ & §&§ §F F g F & 7 § s & § § 5 & &
S & F T §F & £ & S g F 2 £ F§ ¢ &
& > & o o Qo S .3
rog s &

Figure 6. Performance Impact of Staged Reads

may not have the opportunity to issue their prefetch before
the write drain is complete.

Figure 5 shows the impact of staged reads on average
DRAM latency. Figure 6 shows the impact on normalized
weighted throughput. The benchmarks are ordered from
left to right based on the throughput improvement caused
by the SR_32 configuration. Some applications, such as ep,
dealll, and lu.large do not exhibit much improvement with
staged reads, even with an infinite register pool - whereas
applications such as stream, leslie3d, fluidanimate, show
marked improvements. The sensitivity of applications to
our innovation is dependent on whether during a write
drain cycle, there are enough reads that can be parallelized
using staged reads and whether these reads would have in-
troduced data bus bubbles in the baseline because of bank
conflicts. To help understand the performance character-
istics of the different configurations, we plot the average
number of reads stalled during write queue drain cycles and
the number of staged reads completed with 32 staged-read
registers in Figure 7a. In Figure 7b, we plot the average
number of banks that are engaged by writes during write
queue drains.

The best indicator for Ideal performance is the number
of pending reads during each write induced stall period.
The performance of the Ideal configuration is high in all
cases where there are a large number of pending reads (the
first series in Figure 7a). In a practical setting, however,
it might not be possible for the staged read mechanism to
drain all these pending reads. There might not be enough

bank imbalance between reads and writes for the staged
reads to schedule read prefetches. Thus, an application like
sor.large shows marked improvement with Ideal configura-
tion (Figure 6), because it has a high number of pending
reads (Figure 7a). In reality, these reads can not be drained
by staged reads as the writes in sorlarge also touch a large
number of banks (Figure 7b), thereby reducing the oppor-
tunity to carry out staged reads.

Applications that have a high read bandwidth demand
would naturally see many reads queuing up during write
drain cycles - but the MPKI alone can not explain the re-
sponse of an application to staged reads. The improve-
ments obtained are influenced by bank imbalance between
writes and reads. For the best performing applications
with the SR_32 scheme, such as stream, leslie3d, and flu-
idanimate, there are relatively larger number of queued
reads during each write-queue drain cycle (Figure 7a). A
large fraction of these can be drained by staged reads, be-
cause few banks are touched by the writes during write
queue drains in these applications (Figure 7b), leaving
other banks ready to service staged reads. Applications that
have a favorable combination of large number of pending
reads and small number of banks touched by writes benefit
the most from regular staged reads with the baseline sched-
uler. On the other hand, applications such as lu.large and
perlbench have very few outstanding reads during write
drains, while applications like omnetpp and is have the
writes spread evenly over a large number of banks - leading
to lower benefits.

? mpending Reads™ SR_32 mSR_32+WIMB

20

15

10

il

ML |
8

S XS VEY O 9 OAY DS S N oL
RISFTETVIETSEISPTORSLELEFTF
IESE FEEET $88 § S/EE$
TEE TEES 5 0§ s ¥”
g Fg N 5

(a) Average Number of Reads Stalled By Write
Drains and Number of Staged Reads Completed
Per Rank

9 -
HSR_32/ Baseline " SR_32+WIMB
8
s 7
£
] 6
3 s
'_
n 4
<
s 3
o 3
1
0
S 9. A . ~ >
SEF TEEeS §TS 8 £58585
< F&S o S S5
s ol $ N
(b) Average Number of Banks Touched By Writes
Per Drain Cycle Per Rank

Figure 7. Statistics to help explain improvements with Staged Read optimization

Increasing the number of staged-read registers improves
the latency for some benchmarks (Figure 6a). For exam-
ple, by going from SR_16 to SR_32, the average latency of
accesses drops by approximately 8% for applications like
stream and leslie3d. For most other applications, 16 regis-
ters are enough to handle all pending reads, an observation
verified by Figure 7a. For the benchmarks we evaluated,
SR_32 performs as well as SR_Inf on all occassions except
for stream, leslie3d, and fluidanimate, where during some
drain cycles, more than 32 SR registers can be useful. But
this is not a common occurrence.

On average, the best performing scheme is the
SR_32+WIMB configuration that yields a 7% improvement
in throughput. By actively creating idle periods for some
banks that have a lot of pending reads, this configuration
offers a good opportunity for these reads to be completed
using staged reads. As seen in Figure 7b, the average
number of banks touched by writes decreases due to the
biased write-scheduling policy for almost all cases. For
applications like gromacs, derby, omnetpp the bank im-
balance is increased favorably and this is reflected in the
additional benefit obtained by SR_32+WIMB over regular
SR_32 - more staged reads are completed for these appli-
cations (Figure 7a) with the novel write-scheduling policy.
Applications like cg and mg that already touched a small
number of banks do not derive any additional benefits over
SR_32 with the modified write-scheduling policy. There
are also applications such as gobmk and lu where the im-
provement with SR_32 and a regular write-scheduling pol-
icy is greater than the SR_32+WIMB policy. This can be
explained by the fact that in these benchmarks, the explic-
itly reduced bank footprint of writes leads to a lengthening
of the average write-queue drain cycle - which diminishes
the benefits of staged reads. However, in none of the cases
do we see any performance degradation compared to the
baseline.

The gap between the Ideal configuration and SR_Inf
in Figure 6 cannot be bridged by parallelizing reads and
writes. This results from reads waiting on the same banks
as targeted by the writes - a problem that can not be allevi-
ated with regular staged reads, but which is abstracted away
in the Ideal configuration. By using the SR_32+WIMB
configuration, this is ameliorated to a certain extent for

most applications.

Overall, we witness a 17% reduction in average DRAM
latency across the benchmark suite resulting in a 6.2% im-
provement in overall system throughput with 32 staged
read registers - this grows to 7% with the modified write-
scheduling policy. Half of the simulated benchmarks
yield an improvement higher than 3% and for these write-
intensive benchmarks, the average throughput improve-
ment is 11% with SR_32.

Figure 8 sheds further light into the DRAM latency
impact of staged-reads. Figure 8a shows the DRAM la-
tency breakdown for DRAM read requests. We see that
read requests waiting for a write queue drain to finish have
very long queuing delays in the baseline which are brought
down substantially by using staged reads (Figure 8a) lead-
ing to lowering of overall DRAM latency. However, even
after a read goes through the staged read phase, it has to
wait in the staged-read register for some amount of time
before it can be sent out over the bus, which we refer to
as the staged-wait latency. Recall that when a read request
goes into the staged-read register, it has already finished
its bank activity and the next request to the bank can start
immediately. By reducing the bank-wait for pending read
requests, the bus utilization after the write-queue drain is
increased.

Figure 8b shows the bus utilization in the period fol-
lowing the write queue drain till all the reads that had
arrived before the end of the write-queue drain are com-
pleted. With staged reads, the utilization in this period in-
creases by as much as 35% for STREAM and about 22%
on average. Applications that demonstrate the maximum
bus utilization in this period with staged-reads also derive
the maximum benefit. We don’t show the bus utilization in
this window achieved by the Ideal configuration because it
is 100% for all applications by design.

4.2 Sensitivity Analysis

To estimate the extent of the influence of our choice of
DRAM parameters on the performance of staged reads, we
tested the following factors that can potentially impact the
efficacy of staged reads - write queue high and low water
marks and a higher number of banks.

H Queuing Delay " Staged Wait ®Core Access
7 Addr Transfer Data Transfer

400

350
300
250
200
150
100
5
0

Baseline SR_16 SR_32 SR_Inf SR_32+WI Ideal
MB

(a) DRAM Latency Breakdown For All Read
Requests

DRAM Latency (CPU cycles)
o

9 H Baseline BSR 16 ' SR _32 ESR_Inf
u +
80% SR_32+WIMB
70%
60%
50%
40%
30%
20%
10%
0%
S5V SXF 29 % TNILD @
SISTTIIITSRISITORELTLEETF &
§Loo IEFETE TE§ § S$R5E5L &
SEF SFLS §75 F Fo8EET &
qu F& O 9 S oS3
-\’”Q 5 -§

Figure 8. Analysis of Staged Reads

4.2.1 Write Queue Parameters

The choice of the high and low water marks for the write
queue will determine the duration and frequency of write
drain cycles. This in turn determines for how long (and
how many) reads are stalled due to the write queue drain
and also how frequently this disruption occurs, respec-
tively. It also determines if enough bank imbalance is ob-
served, both during and after the write drain.

We ran simulations with various values of the write
queue drain parameters. With large values of the high wa-
ter mark, draining of writes can be delayed - potentially
reducing the adverse impacts of writes. In such a case, it is
also important to drain the write queue by a large amount
each time, because otherwise the gap between write-queue
drains will not be reduced. We present results for two dif-
ferent configurations with high water marks of 16 and 128
and low water marks of 8 and 64, respectively.

However, it is important to note that a baseline system
(not capable of staged reads) which employs high/low wa-
ter marks of 32/16 performs better on average compared to
the 16/8 and 128/64 configurations. We find that by fre-
quently initiating write-queue drains (i.e., a smaller high
water mark) , bandwidth hungry applications get penalized
so that the IPC drops by about 2% on average. Again, by
using a large value for the high water mark, we risk stalling
some critical reads at the head of the out-of-order core’s re-
order buffer for a long duration. Thus with a high value for
the high water mark, some applications perform better than
the baseline (i.e., high/low water mark 32/16) and some ap-
plications perform worse, leading to a 1.4% performance
degradation on average. Therefore, for the workloads we
simulated, the best performing write queue configuration
is the one used for the baseline.

We see that in both the 16/8 and 128/64 cases, staged
reads can offer performance improvements as shown in
Figure 9. The results show the same trends as before,
but the improvements are slightly lower (just under 5%
on average) with SR_32 (which has no scheduler induced
write-imbalance). With low water marks, there are just not
enough pending reads that can be expedited with staged-
reads. In fact, even with the write-scheduler creating write-
imbalance, there is no extra improvement due to the dearth

of writes. On the other hand, with high water-marks, there
is less write imbalance with a regular scheduler, which can
be alleviated by SR_32+WIMB as it has a much larger pool
of writes to choose from. This leads to the SR_32+WIMB
creating more oppurtunities for staged reads - finally yield-
ing a 7.2% improvement over a non-staged read baseline.

4.2.2 More Banks

The efficacy of staged-reads increases if the reads pending
on a write-drain cycle are directed at banks that do not have
many writes going to them. With larger number of banks,
the possibility of the memory controller being able to find
more opportunities for scheduling staged reads increases.
On the other hand, if more banks exist, the baseline suf-
fers from fewer bank conflicts for reads and fewer data bus
bubbles following the write drain. So there are compet-
ing trends at play with more banks. We carry out simula-
tions where the same 4GB capacity as the baseline system
is split into twice the number of banks (i.e., 16 banks/rank).
We observe that a regular DRAM system (without staged
reads) with more banks performs better than the baseline
by about 3.1%. Applying our SR_32 configuration on
this improved system yields an average improvement of
about 4.3%. Due to increased bank parallelism, the per-
formance benefits with SR_32+WIMB are comparable to
regular staged reads. Thus, as a performance optimization
for next generation memories, it is more effective to add
Staged Read registers than to double the number of banks.

4.3 Projecting for Future Main Memory
Trends

In this section, we evaluate if the Staged Read opti-
mization will be more compelling in future memory sys-
tems. We examine a number of processor configurations
that might represent these future trends: memory systems
with reliability support, non-volatile memories, and fewer
channels per core.

4.3.1 Higher Write Traffic

With errors in DRAM becoming a major source of con-
cern [35,45], DIMMs equipped with error protection mea-
sures are being employed in data-centers. In one possi-
ble chipkill implementation (to overcome the failure of one
DRAM chip on a rank), each DIMM can have a separate

1.15

g HBaseline " SR_32 ESR_32+WIMB
g 1
(=]
>
105
I
[
?
.
<
€ o095
5
2

0.9

o
ESTEIRETIFLSTSOTLREZTSSS &
$58 &8 $E58858 §° FEReed &
ERS FES <
§I ST 8§ 5% § §goFeT S
P]

(a) High Water Mark = 16, Low Water Mark = 8

1.25

HBaseline ""SR_32 EMSR_32+WIMB

1.2
1.15
11

1.05

Normalized Throughput

2
S O I LETE &£
P RG IS . IS¢
$F §§ 58588 & 955585 &
3 S o T § 8 © SF £~ @
g e} N @
] & § s £
T 9

(b) High Water Mark = 128, Low Water Mark = 64

Figure 9. Staged Reads With Different Write Queue Sizes

1.7
HBaseline "' SR_32 mSR_32+WIMB

5
= 1.6
<
D 15
=
S 14
Z
1.3
K
N 12
g 1.1
5
1
2 i
0.9 N 7] > XyVx X = QN o
BSESSRECFIFHSTSOTLREeSTE 8
68 8§ $85esss §° fE5s58 &
LS §F §75°50F & 59485 §
2 9 > 5 9 8 oSy &
2 & 8 s g
= g o

Figure 10. Staged Reads with RAID-5 like
Chipkill Protection

chip that stores either parity information per byte or an
ECC code per 64-bit word. On each read, the information
in the extra chip can help with error detection and possi-
bly correction. If the information is not enough to correct
the error (as may happen with multi-bit errors), a second-
tier protocol is invoked. In RAID-like fashion, parity is
also maintained across DIMMs. If a DIMM flags an un-
correctable error, information from all DIMMs is used to
reconstruct the lost data. Such RAID-like schemes have
been implemented in real systems [1] and will likely be
used more often in the future as error rates increase near
the limits of scaling. As is seen in any RAID-5 system, ev-
ery write to a cache line now requires us to read two cache
lines and write two cache lines. This causes a significant
increase in write traffic.

We simulate a RAID-5 like system where a fifth DIMM
stores the parity information for the other 4 DIMMs. The
baseline system in such a scenario encounters double the
write traffic as seen in a non-ECC scenario. This, cou-
pled with the increased number of reads makes staged reads
more compelling. We see that the throughput increases by
an average of 9% (Figure 10) by using 32 staged-read
registers. Compared to a non-reliable baseline, we see a
shorter gap between write-queue drain cycles which im-
proves the benefits of Staged Reads. Using SR_32+WIMB,
the average throughput does not increase beyond what is
provided by SR_32 - since a data write and it’s correspond-

- 17 -
2 HBaseline " SR_32
)
2
1.
3 15
£ 14
£ 1
°
3 13
N
= 1.2
E 1
o
Z
o HERERRERRERRRRRRRETRETLT |
~ &N ~
S SRR ATSSISOTE8883835 8
$6¢ I§ SE59¢SE §° §85s58 &
S §€ & § §0F & L593¢9
[9 2> 5§ o & Sy &
] g $§ 5 g
N & g

Figure 11. Staged Reads with PCM Main
Memory

ing ECC code write have to be completed together, the
write-scheduler is not able to re-order the writes to expose
any additional staged read opportunities.

4.3.2 PCM
Recent work [22,31,32] advocates the use of PCM as a

viable main memory replacement. Similarly, other NVM
technologies with read and write latencies longer than
those of DRAM are also being considered [39]. We assume
that the PCM main memory is preceded by a 16 MB L3
eDRAM cache (L3 average latency of 200 cycles). PCM
chip timing parameters are summarized in Table 2; the
PCM read and write latencies are approximately 2X and
4X higher than the corresponding DRAM latencies due to
the high values of the row-activation (tRCD) and write-
recovery (tWR) timing parameters.

The higher read and write latencies make the Staged
Read optimization more compelling. We observe an av-
erage 26% reduction in memory latency because of a
sharp drop in queuing delay. This translates to an average
12% throughput improvement (Figure 11), with the Stream
benchmark showing a 58% improvement. On the other
hand, SR_32+WIMB does not offer as much advantage
as regular SR_32 - the performance improvement is 9.5%
on average. The performance drop (compared to SR_32)
is due to the high penalty of lengthening the write-queue
drain cycle-time in PCM. By restricting bank-parallelism

within writes, SR_32+WIMB ends up with bank conflicts
on the targeted banks.

4.3.3 Number of Channels

With a greater number of channels, the pressure of pend-
ing reads on each channel would reduce and the benefits of
Staged Reads would also diminish. With a quad-channel
configuration, for our workload suite, the benefits of SR_32
1s 3.3% and that of SR_32+WIMB is about 3.0%. However,
the ITRS [19] projects an increase in the number of cores,
but no increase in the number of off-chip pins. Hence, we
expect that the number of channels per core will actually
decrease in the future. If we instead assume that 16 cores
share a single channel, the improvement with SR_32 jumps
up to 8.4% because of the greater role played by queu-
ing delays, while introducing write imbalance improves
throughput by 9.2%.

5 Related Work

A large body of work has looked at techniques to im-
prove the latency of DRAM reads and the maximum achie-
veable bandwidth of DRAM systems. Researchers have
proposed techniques to mitigate long DRAM latencies
through intelligent data placement [38,46] and optimized
scheduling [21, 28,29].

An example of additional buffering on DRAM chips
is the use of row buffer caches. Row buffer caches pri-
marily help by increasing row buffer hit rates. Hikada
et al. [15] propose a DRAM architecture with an on-chip
SRAM cache, called Cache-DRAM, that maintains re-
cently opened row-buffers to decrease access latency (by
eliminating precharging time) and increasing bandwidth
utilization. Hsu et al. [17] evaluate the trade-offs between
caching one entire row-buffer in SRAM and caching multi-
ple regular data cache lines in a set-associative cache. They
also propose the use of address interleaving schemes to
spread accesses over multiple row buffers to improve bank
parallelism. Zhang et al. [47] propose another variation of
cached DRAM where the on-memory cache contains mul-
tiple large cache lines buffering multiple rows of the mem-
ory array. However, all these techniques suffer from the
problems described in Section 3.2 and are not specifically
targeted at optimizing write behavior.

The impact of better write queue management on
DRAM system performance was articulated in a recent pa-
per from Stuecheli et al. [37]. The authors propose a co-
ordinated cache and memory management policy that ex-
poses the contents of cache-lines in the LLC to the memory
controller and hence provides it with more opportunities to
find writes that can cause row buffer hits. The large (vir-
tual) write queue also provides opportunities for long write
bursts to improve bus utilization. Staged Reads and VWQ
are orthogonal for the most part: VWQ tries to reduce the
time spent in writes and Staged Reads try to hide write im-
balance and read imbalance. So the two techniques could
be combined to further alleviate the write bottleneck. Lee
et al. [23] proposed a mechanism to reduce write interefer-
ence that is similar to VWQ in which dirty lines from the
LLC are selected for pre-emptive eviction if they are to the
same row in the DRAM bank.

For PCM systems, Qureshi et al. describe write-
cancellation and write-pausing to prevent reads from being

stalled by iterative writes [30]. But these writes have to
eventually happen and such re-tries may increase the over-
all bank occupancy of writes.

Lee et al. describe eager write-back [16], in which dirty
lines are pre-emptively sent to the DRAM from the LLC
during bus idle cycles. This reduces bandwidth contention
between reads and writes that arise typically during cache
replacement. Natarajan et al. [27] describe several write
scheduling policies that try to schedule writes opportunis-
tically when the read activity is low. Borkenhagen and Van-
derpool [14] suggest techniques to predict the arrival of a
read, to stifle the write queue drain. Shao et al. [36] de-
scribe BASR where the goal is to hide the write latency
by either preempting writes with reads or by piggybacking
writes to some row that has been opened by an ongoing
read. BASR does nothing to improve the parallelism be-
tween reads and writes, which is the central focus of our
paper. Further, piggybacking opportunities will be limited
in future many-core processors because of reduced locality.
In fact all the above techniques will be less applicable in fu-
ture multi-cores. Activity on a memory bus is expected to
be less bursty when the bus is shared by multiple programs.
Hence, future multi-cores will likely see fewer bus idle cy-
cles and fewer opportunities to drain writes without posing
any interference.

6 Conclusions

We show that write handling in modern DRAM main
memory systems can account for a large portion of overall
execution time. This bottleneck will grow in future mem-
ory systems, especially with more cores, chipkill support
or NVM main memories. This requires that mechanisms
be developed to boost read-write parallelism. We show
that the Staged Read optimization is effective at breaking
up a traditional read into two stages, one of which can be
safely overlapped with writes. We show average improve-
ments of 7% in throughput for modern memory systems
(accompanying a 17% reduction in DRAM access latency)
and up to 12% for future systems. The proposed imple-
mentation has been designed to cater to the cost sensitiv-
ity of DRAM chips. We introduce less than a kilo-byte of
buffering near the 10 pads, similar to structures that have
been employed for other functionalities in some prior high
performance DRAM chips. We therefore believe that the
Staged Read optimization is worth considering for DRAM
chips designed for the high performance segment.

7 Acknowledgements

We thank the reviewers (especially our shepherd,
Hillery Hunter) and members of the Utah Arch group for
their suggestions to improve this work.

References

[1] HP ProLiant Server Memory. http://h18000.
wwwl.hp.com/products/servers/technology/

memoryprotection.html.
[2] Hybrid Memory Cube, Micron Technologies. http://

www.micron.com/innovations/hmec.html.
[3] STREAM - Sustainable Memory Bandwidth in High Perfor-

mance Computers. http://www.cs.virginia.edu/stream/.

[4] Wind River Simics Full System Simulator. http: //www.

windriver.com/products/simics/.
[5] 64M-bit Virtual Channel SDRAM Data Sheet. Technical

report, NEC, 2003.
[6] Exploring the RLDRAM II Feature Set. Technical Report

TN-49-02, Micron Technologies Inc., 2004.
[7] Micron DDR3 SDRAM Part MT41J128M8

http://download.micron.com/pdf/
datasheets/dram/ddrB/le DDR3_SDRAM. pdf,

2006.
[8] Low-Power Versus Standard DDR SDRAM. Technical Re-

?ort TN-46-15, Micron Technologies Inc., 2007.

[9] Java Virtual Machine Benchmark, 2008.

Available at http://www.spec.org/jvm2008/.

[10] Mobile DRAM Power-Saving Features and Power Calcu-
lations. Technical Report TN-46-12, Micron Technologies
Inc., 2009.

[11] M. Awasthi, D. Nellans, K. Sudan, R. Balasubramonian, and
A. Davis. Handling the Problems and Opportunities Posed

by Multiple On-Chip Memory Controllers. In Proceedings

of PACT, 2010.
[12] D. Bailey et al. The NAS Parallel Benchmarks. [Interna-

tional Journal of Supercomputer Applications, 5(3):63-73,

Fall 1991.
[13] C. Bienia, S. Kumar, and K. Li. PARSEC vs. SPLASH-2: A

Quantitative Comparison of Two Multithreaded Benchmark
Suites on Chip-Multiprocessors. In Proceedings of IISWC,

2008.

[14] J. Borkenhagen and B. Vanderpool. Read Prediction Al-
gorithm to Provide Low Latency Reads with SDRAM
Cache, 2004. United States Patent Application, Number US

2004/6801982 Al .
[15] H. Hidaka, Y. Matsuda, M. Asakura, and K. Fujishima.

The Cache DRAM architecture: A DRAM with an On-chip

Cache Memory. Micro, IEEE, 10(2), 1990.
[16] H. hsin Lee and G. Tyson Eager writeback - a technique

for improving bandwidth utilization. In In Proceedings of

MICRO, 2000.
[17] W.-C. Hsu and J. E. Smith. Performance of cached dram

organizations in vector supercomputers. In Proceedings of

ISCA, 1993.
[18] E. Ipek, O. Mutlu, J. Martinez, and R. Caruana. Self Op-

timizing Memory Controllers: A Reinforcement Learning

¥Eroach In Proceedings of ISCA, 2008.
[19] ITRS. International Technology Roadrnap for Semiconduc-

tors, 2009 Edition.
[20] B. Jacob, S. W. Ng, and D. T. Wang. Memory Systems -

Cache, DRAM, Disk. Elsevier, 2008.
[21] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter.

Thread Cluster Memory Scheduling: Exploiting Differences
in Memory Access Behavior. In Proceedings of MICRO,

2010.
[22] B. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting

Phase Change Memory as a Scalable DRAM Alternative. In

Proceedings of ISCA, 2009.
[23] C. Lee, arasimhan, E. Ebrahimi, O. Mutlu, and

Y. Patt. DRAM-Aware Last-Level Cache Writeback: Reduc-
ing Write-Caused Interference in Memory Systems. Techni-
cal report, High Performance Systems Group, University of

Texas at Austin, 2010.
[24] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,

G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A Full System Simulation Platform.

IEEE Computer, 35(2):50-58, February 2002.
[25] N. Muralimanohar, R. Balasubramoman and N. Jouppi.

Optimizing NUCA Organizations and Wiring Alternatives
for Large Caches with CACTI 6.0. In Proceedings of MI-

CRO, 2007.

[26] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Ac-
cess Scheduling for Chip Multiprocessors. In Proceedings
of MICRO, 2007.

[27] C. Natarajan, B. Christenson, and F. Briggs. A Study of Per-
formance Impact of Memory Controller Features in Multi-

Processor Environment. In Proceedings of WMPI, 2004.
[28] K. Nesbit and J. E. Smith. Data Cache Prefetching Using a

Global History Buffer. In Proceedings HPCA, 2004.
[29] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch

Scheduling - Enhancing Both Performance and Fairness of

Shared DRAM Systems. In Proceedings of ISCA, 2008.
[30] M. Qureshi, M. Franceschini, and L. Lastras. Improving

Read Performance of Phase Change Memories via Write
Cancellation and Write Pausing. In Proceedings of HPCA,

2010.

[31] M. Qureshi, M. Franceschini, L. Lastras-Montano, and
J. Karidis. Morphable Memory System: A Robust Archi-
tecture for Exploiting Multi-Level Phase Change Memory.
In Proceedings of ISCA, 2010.

[32] M. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali. Enhancing Lifetime and Security
of PCM-Based Main Memory with Start-Gap Wear Level-

ing. In Proceedings of MICRO, 2009.
[33] M. Qureshi, V. Srinivasan, and J. Rivers. Scalable High Per-

formance Main Memory System Using Phase-Change Mem-

ory Technology. In Proceedings of ISCA, 2009.
[34] S. Rixner. Memory Controller Optimizations for Web

Servers. In Proceedings of MICRO, 2004.
[35] B. Schroeder et al. DRAM Errors in the Wild: A Large-

Scale Field Study. In Proceedings of SIGMETRICS, 2009.
[36] J. Shao and B. Davis. A Burst Scheduling Access Reorder-

ing Mechanism. In Proceedings of HPCA, 2007.
[37] J. Stuecheli, D. Kaseridis, D. Daly, H. Hunter, and L. John.

The Virtual Write Queue: Coordinating DRAM and Last-

Level Cache Policies. In Proceedings of ISCA, 2010.
[38] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Bal-

asubramonian, and A. Davis. Micro-Pages: Increasing
DRAM Efficiency with Locality-Aware Data Placement. In

Proceedings of ASPLOS-XV, 2010.

[39] E. Tabrizi. Non-volatile STT-RAM: A True Universal
Memory. http://www.flashmemorysummit.com/
English/Collaterals/Proceedings/2009/
20090813_ThursPlenary_Tabrizi.pdf.

[40] A. Udipi, N. Muralimanohar, R. Balasubramonian,
A. Davis, and N. Jouppi. Combining Memory and a Con-
troller with Photonics through 3D-Stacking to Enable Scal-
able and Energy-Efficient Systems. In Proceedings of ISCA,
2011.

[41] A. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubra-

monian, A. Davis, and N. Jouppi. Rethinking DRAM De-
sign and Organization for Energy-Constrained Multi-Cores.

In Proceedings of ISCA, 2010.
[42] T. Vogelsang. Understanding the Energy Consumption of

Dynamic Random Access Memories. In Proceedings of MI-

CRO, 2010.
[43] D. Wang et al. DRAMsim: A Memory-System Simulator.

In SIGARCH Computer Architecture News, September 2005.
[44] D.H. Woo et al. An Optimized 3D-Stacked Memory Archi-

tecture by Exploiting Excessive, High-Density TSV Band-

width. In Proceedings of HPCA, 2010.
[45] D. Yoon and M. Erez. Virtualized and Flexible ECC for

Main Memory. In Proceedings of ASPLOS, 2010.
[46] Z.Zhang, Z.”Zhu, and X. Zhand. A Permutation-Based Page

Interleaving Scheme to Reduce Row-Buffer Conflicts and

Exploit Data Locality. In Proceedings of MICRO, 2000.
[47] Z. Zhang, Z. Zhu, and X. Zhang. Cached DRAM for ILP

Processor Memory Access Latency Reduction. Micro, IEEE,
21(4), 2001.

