Compressing DMA Engine: Leveraging Activation Sparsity For Training Deep Neural Networks

Minsoo Rhu†, Mike O’Connor*, Niladrish Chatterjee*, Jeff Pool*, Youngeun Kwon†, and Stephen W. Keckler*

POSTECH† and NVIDIA*
Motivation
ML trends: deeper & larger DNN models
From AlexNet to ResNet

7 convolutional layers (2012)

* Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS-2012
ML trends: deeper & larger DNN models
From AlexNet to ResNet

153 convolutional layers
(2016)

Memory “capacity” limits in DNN training

Training large & deep DNNs incurs large memory allocations

How to Train a Very Large and Deep Model on One GPU?
Problem: GPU memory limitation

CS231n Convolutional Neural Networks for Visual Recognition

Computational Considerations
The largest bottleneck to be aware of when constructing ConvNet architectures is the memory bottleneck. Many modern GPUs have a limit of 3/4/6GB memory, with the best GPUs having about 12GB of memory. There are three major sources of memory to keep track of:

HOW TO SOLVE THE MEMORY CHALLENGES OF DEEP NEURAL NETWORKS

Posted by Jamie Hanlon | Mar 30, 2017
Prior solution: virtualized DNN (vDNN)

Expose both CPU and GPU memory for allocating DNN training data

* Rhu et al., “vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016
Prior solution: virtualized DNN (vDNN)
Exposé both CPU and GPU memory for allocating DNN training data

* Rhu et al., “vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016
Prior solution: virtualized DNN (vDNN)

Expose both CPU and GPU memory for allocating DNN training data

C Rhu et al., “vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016
Large Model Support (LMS) with PowerAI

Expose both CPU and GPU memory for allocating DNN training data

Realizing the value of Large Model Support (LMS) with PowerAI IBM Caffe

IBM PowerAI 4.0 has been released with Large Model Support (LMS) in IBM Caffe. LMS uses system memory in conjunction with GPU memory to overcome GPU memory limitations in Deep Learning Training.

LMS enables processing of high definition images, large models, and higher batch sizes that doesn’t fit in GPU memory today (Maximum GPU memory available in Nvidia P100 GPUs is 16GB).

LMS Options

* `-lms <size in KB>`,
* `-lms_froc <x>`, where `0<x<1.0`

You can enable the large model support in IBM Caffe by adding `-lms <size in KB>`. This acts as a threshold size that decides which memory allocations will happen on CPU memory or on GPU memory.

For example `-lms 1000`. With this option, any memory chunk allocation larger than 1000KB will be done in CPU memory, and fetched to GPU memory only when needed for computation. Thus, if you use a very large value like `-lms 1000000000`, it will effectively disable the feature while a small value means a more aggressive LMS. The value is used to control the performance trade-off. Apparently bringing in more data from the CPU memory will incur as overhead in runtime.

As a secondary option, there is `-lms_froc <x>`, where `0<x<1.0`. For example, with `-lms_froc 0.5` LMS doesn’t kick in until more than at least 50% of GPU memory is expected to be utilized. This is useful for disabling LMS for a small network or to use the GPU memory efficiently for larger networks.

HPC system node for deep learning

Multiple GPUs (4 to 8) connected under a PCIe root complex

High capacity, low bandwidth memory (DDR4)

QuickPath Interconnect (QPI)

Switch
PCIe
Switch
PCIe
Switch
PCIe
Switch

Low capacity, high bandwidth stacked memory (HBM)

Big Data

Deeper & wider neural networks
HPC system node for deep learning
Multiple GPUs (4 to 8) connected under a PCIe root complex

- High capacity, low bandwidth memory (DDR4)
- QuickPath Interconnect (QPI)
- Low capacity, high bandwidth stacked memory (HBM)

GPU-CPU migration traffic

Big Data

Deeper & wider neural networks
HPC system node for deep learning

Multiple GPUs (4 to 8) connected under a PCIe root complex

Challenges: PCIe channel bandwidth becomes a performance bottleneck!
Opportunity: “sparse” data structures

Amplify effective PCIe bandwidth via compressing CPU-migrated data
Opportunity: “sparse” data structures

Amplify effective PCIe bandwidth via compressing CPU-migrated data
Key contributions of this work

Application characterization study on sparsity when training convolutional neural networks

Architectural support for leveraging activation sparsity in virtualized DNNs
Q. How much sparsity do DNNs exhibit during training?
Case study) AlexNet
Characterizing the changes in layer density during training

* Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS-2012
Case study) AlexNet
Characterizing the changes in layer density during training

* Krizhevsky et al., “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS-2012
Case study) AlexNet

Characterizing the changes in layer density during training

conv0
(96, 55, 55)

Test image

Trained
(0%)

Feature maps

Test image
Case study) AlexNet
Characterizing the changes in layer density during training

Test image

(conv0 (96, 55, 55)

(55x55) 2D image

Trained (0%)

Feature maps
Case study) AlexNet
Characterizing the changes in layer density during training

Test image

(55x55) 2D image

conv0 (96, 55, 55)

96 channels

Trained (0%)

Feature maps

96 channels

96
Case study) AlexNet
Characterizing the changes in layer density during training

conv0
(96, 55, 55)

Test image

Trained
(0%)
Case study) AlexNet

Characterizing the changes in layer density during training

conv0
(96, 55, 55)

Test image
Case study) AlexNet
Characterizing the changes in layer density during training

conv0
(96, 55, 55)

Test image

Average layer density: 49%
(51% of activations are 0-valued)
Case study) AlexNet
Characterizing the changes in layer density during training

Average layer density: 36%
(64% of activations are 0-valued)
Case study) AlexNet
Characterizing the changes in layer density during training

Average layer density: **22%**
(78% of activations are 0-valued)
Case study) AlexNet
Putting everything together
Case study) AlexNet

Putting everything together
Case study) AlexNet

Putting everything together

Observation #1: First CONV layer consistently exhibits around 50% layer density across the entire training process.
Case study) AlexNet

Putting everything together

Observation #2: Pooling layers always increase overall activation density.
Case study) AlexNet

Putting everything together

Observation #3: Within each layer, activation density rapidly decreases during the initial training periods; once training period reaches the fine-tuning stage, density gradually crawls back up again.
Observation #4: Later layers are generally more sparser than earlier layers
Case study) VGG-16
Putting everything together

Deeper

Sparser
What causes such behavior in DNNs?

Discussed much more in our paper 😊
What causes such behavior in DNNs?

Observation #4: Sparsity increases as you go deep inside the network.
What causes such behavior in DNNs?

Observation #4: Sparsity increases as you go deep inside the network

What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network

First few layers: filters are trained to respond to “class-invariant” features
- Corners
- Edges
- Colors

What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network

What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network

Deeper layers: more “class-specific” features (e.g., Textures ...)

What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network

What causes such behavior in DNNs?

Observation#4: Sparsity increases as you go deep inside the network.

For “deep” neural networks, there exists significant sparsity in activations (40% ~ 90% layer-wise sparsity).

Zeiler et al., “Visualizing and Understanding Convolutional Networks”, arXiv.org, 2013
Compressing DMA Engine (cDMA)
Baseline CPU-GPU system interconnect

Max. 16 GB/sec communication channel between CPU-GPU
Compressing DMA architecture

Goals: Saturate PCIe channel with compressed activation maps

Q. How should the memory subsystem interact with the DMA engine?
Compressing DMA architecture

DRAM read-BW should be high enough to generate compressed data

- DRAM read throughput >= (compression rate x PCIe bandwidth)
Compressing DMA architecture

Challenges: GPU crossbar bandwidth should be amplified proportionally

![Diagram of CUDA architecture](image)

- **Compressed data**

: DRAM read throughput $\geq (\text{compression rate} \times \text{PCIe bandwidth})$
Compressing DMA architecture

Solution: Compress data “before” routing it through the crossbar

![Diagram of DMA architecture]

- **SM:** Streaming multipliers
- **L2:** Level 2 cache
- **C:** Compression unit
- **B:** Buffer to aggregate compressed data from all MCs

- **Crossbar:** Connects different components
- **GPU:** Contains cDMA Engine
- **CPU:** Processor unit
- **MC:** Multiple cores
- **DRAM:** Dynamic random-access memory
- **PCIe:** Peripheral component interconnect express
- **16 GB/s:** Bandwidth capacity
- **336 GB/s:** Higher bandwidth capacity

(C) Minsoo Rhu
Compressing DMA architecture

Solution: Compress data “before” routing it through the crossbar.

![Diagram of DMA architecture]

- **C**: Compression unit
- **B**: Buffer to aggregate compressed data from all MCs
Compression algorithms

1. Run-length encoding
 + Simple to implement, well-suited for high-throughput compression
 -- Compression rate is good only when zero-values are clustered

2. Zlib compression
 + Exhibits good compression rate for a variety of data patterns
 -- Designing high-throughput compression hardware is challenging
 e.g., Dedicated ASIC/FPGA solutions provide roughly 2.5 GB/sec data
Proposed compression algorithm

Frequent-value compression (encoding sparseness)

< Uncompressed >

Data:

a b c d e f g h i j k l m n o p

Metadata:

0

has zeros

< Compressed >

Data:

a b c d e f g h i j k l m n o p
Proposed compression algorithm

Frequent-value compression (encoding sparseness)

< Uncompressed >

Data:
0 0 a 0 0 b 0 0 c d e 0 0 0 0 f

N elements

< Compressed >

Data:
a b c d e f

Metadata (bitmask):
1 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0 0 1

has zeros

N bits
Compression microarchitecture

Frequent-value compression (encoding sparseness)

<Area overhead>
- FreePDK + CACTI
- 1.5 mm² in 28 nm process
- (Note) GV100 size: 800 mm²
Results
Evaluation

Methodology

Application characterization & datasets

Model: trained from scratch using Caffe

Activations: collected at training time, which are fed into the compression module
Evaluation

Methodology

Application characterization & datasets

Model: trained from scratch using Caffe

Activations: collected at training time, which are fed into the compression module

Performance evaluation (hybrid approach)

Real GPU:

Analytical model:
Evaluation

Methodology

Application characterization & datasets

 Model: trained from scratch using Caffe

 Activations: collected at training time, which are fed into the compression module

Performance evaluation (hybrid approach)

 Real GPU:

 measured using vDNN* with CPU-migrated data properly compressed

 Analytical model:

 penalize performance when cDMA’s DRAM bandwidth pressure is high

* Rhu et al.,“vDNN: Virtualized Deep Neural Networks for Scalable, Memory-Efficient Neural Network Design”, MICRO-2016
Avg/Max compression rate

Higher is better

Compression ratio

<table>
<thead>
<tr>
<th>AlexNet</th>
<th>OverFeat</th>
<th>NiN</th>
<th>VGG</th>
<th>SqueezeNet</th>
<th>GoogleNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL</td>
<td>ZV</td>
<td>ZL</td>
<td>RL</td>
<td>ZV</td>
<td>ZL</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>avg (network)</td>
<td>max (layer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Avg/Max compression rate

Higher is better

![Graph showing compression ratios for different networks and algorithms.]

- **RL** (run-length encoding)
- **ZV** (zero-value compression)
- **ZL** (Zlib compression)

: different compression algorithm

=> RL (run-length encoding), ZV (zero-value compression), and ZL (Zlib compression)
CPU-GPU data traffic size

Lower is better

- Offload size (normalized)

- Different compression algorithm
 - RL (run-length encoding), ZV (zero-value compression), and ZL (Zlib compression)
Performance

Higher is better

![Performance Chart]

*: different compression algorithm

- RL (run-length encoding), ZV (zero-value compression), and ZL (Zlib compression)
Conclusions

Compressing DMA engine:
Architectural support for sparse CNN training

Avg 2.6x (max 13.8x) compression rate

Avg 53% (max 79%) speedup on Pascal Titan Xp
Backup
Training vs. inference

Deep learning for image classification

TRAINING

Large N

INFERENCEx

Smaller, varied N
Training vs. inference

Deep learning for image classification

TRAINING

- Large N

INFERENCΕ

- Smaller, varied N

: DNN model is fixed (so, activations stay constant for the same input sets)
Training vs. inference
Deep learning for image classification

TRAINING
- DNN model gets constantly updated during the course of training (so, activation map values also changes accordingly ...)

INFERENCe
- DNN model is fixed (so, activations stay constant for the same input sets)
Case study) AlexNet

Characterizing the changes in layer density during training

Average layer density: 31%
(69% of activations are 0-valued)