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Abstract

USIMM, the Utah SImulated Memory Module, is a DRAM main memory system simulator
that is being released for use in the Memory Scheduling Championship (MSC), organized
in conjunction with ISCA-39. MSC is part of the JILP Workshops on Computer Architec-
ture Competitions (JWAC). This report describes the simulation infrastructure and how it
will be used within the competition.



1 Introduction

The Journal of Instruction Level Parallelism (JILP) organizes an annual Workshop on Com-
puter Architecture Competitions (JWAC). The 2012 competition is a Memory Scheduling
Championship (MSC) that will be held in conjuction with ISCA-39 in Portland, Oregon.

The memory sub-system is an important component in all computer systems, accounting
for a significant fraction of execution time and energy. Whena processor core fails to
find relevant data in processor caches, it sends a request to the memory controller on the
processor chip. The memory controller is connected to DRAM chips on DIMMs, via a
memory channel. The memory controller manages a queue of pending memory requests
and schedules them, subject to various timing constraints.The memory latency is the
sum of queuing delay and the time to fetch a cache line from theDRAM chip row buffer.
Many studies have shown that the queuing delay is a significant component of memory
access time and it is growing as more processor cores share a memory channel [6, 10, 14,
22, 23]. The queuing delay for a request is heavily impacted by the memory scheduling
algorithm. The memory scheduling algorithm can determine the wait time for individual
requests, the efficiency of the row buffer, the efficiency in handling writes, parallelism
across ranks and banks, fairness across threads, parallelism within threads, etc. There are
many considerations in designing memory schedulers and some recent algorithms have
significantly advanced the field [10, 14, 21–23]. The Memory Scheduling Championship
hopes to provide a forum to not only compare these many algorithms within a common
evaluation framework, but also stimulate research in an important area.

This report describes the common simulation infrastructure in detail. It describes the mod-
ules within the simulator code, the traces used to representworkloads, and the evaluation
metrics that will be used for the competition. It also provides some guidelines that will
help contestants develop efficient scheduling algorithms.We expect that the simulation
infrastructure will continue to be used beyond the competition, and will facilitate research
and education in the area. The Utah Arch group will continue to release extensions of the
simulator.

2 Memory System Overview

Memory Basics. In a conventional memory system, a memory controller on the pro-
cessor is connected to dual in-line memory modules (DIMMs) via an off-chip electrical
memory channel. Modern processors have as many as four memory controllers and four
DDR3 memory channels [19, 31]. While other memory channel and memory controller
topologies exist (such as Intel’s SMB [25]), our infrastructure is restricted to schedulers for
DDR3 channels and DIMMs.
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A modern DDR3 channel typically has a 64-bit data bus and a 23-bit address/command
bus that can support 1-2 DIMMs. Each DIMM is typically organized into 1-4 ranks. When
the memory controller issues a request for a cache line, all DRAM chips in a rank work
together to service the request, i.e., a cache line is striped across all chips in a rank. A rank
and its constituent DRAM chips are also partitioned into multiple (4-16) banks. Each bank
can process a different cache line request in parallel, but all banks in the active rank must
sequentially share the data and command wires of the memory channel.

Row Buffer Management. Each bank has a row buffer storing the last row accessed
within the bank. If a request can be serviced by data already present in an open row buffer,
the row buffer hit takes less time and energy. If a row buffer is unlikely to yield future hits, it
is beneficial to close the row and precharge the bitlines so that the bank can quickly access a
new row when required. Many commercial memory controllers use proprietary algorithms
to decide when a row must be closed; several patents and papers construct mechanisms for
prediction-based row closure [9, 12, 20, 24, 26, 27, 29, 33].

Address Mapping. A cache line is placed entirely in one bank. The next cache line could
be placed in the same row, or the next row in the same bank, or the next bank in the same
rank, or in the next rank in the same channel, or in the next channel. The data mapping pol-
icy determines the extent of parallelism that can be leveraged within the memory system.
The MSC focuses on two different processor-memory configurations (more details in Sec-
tion 4); each uses a different data mapping policy. The first configuration (1channel, with
ADDRESSMAPPING set to 1) tries to maximize row buffer hits and placesconsecutive
cache lines in the same row, i.e., the lower-order bits pick different columns in a given row.
The address bits are interpreted as follows, from left (MSB)to right (LSB):

1channel mapping policy :: row : rank : bank : channel : column : blockoffset

The second configuration (4channel, with ADDRESSMAPPING set to 0) tries to maxi-
mize memory access parallelism by scattering consecutive blocks across channels, ranks,
and banks. The address bits are interpreted as follows:

4channel mapping policy :: row : column : rank : bank : channel : blockoffset

Memory Commands. In every cycle, the memory controller can either issue a command
that advances the execution of a pending read or write, or a command that manages the
general DRAM state. The four commands corresponding to a pending read or write are:

• PRE: Precharge the bitlines of a bank so a new row can be read out.

• ACT: Activate a new row into the bank’s row buffer.
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• COL-RD: Bring a cache line from the row buffer back to the processor.

• COL-WR: Bring a cache line from the processor to the row buffer.

The six general “at-large” commands used to manage general DRAM state and not corre-
sponding to an entry in the read or write queues are:

• PWR-DN-FAST: Power-Down-Fast puts a rank in a low-power mode with quick exit
times. This command can put the rank into one of two states - active power down or
precharge power down (fast). If all the banks in the DRAM chipare precharged when
the PWR-DN-FAST command is applied, the chip goes into the precharge power
down mode. However, if even a single bank has a row open, the chip transitions
into the active power down mode. The power consumption of theactive power down
mode is higher than that of the precharge power down mode. In both these states, the
on-chip DLL is active. This allows the chip to power-up with minimum latency. To
ensure transition into the lower power state, it may be necessary to first precharge all
banks in the rank (more on this below).

• PWR-DN-SLOW: Power-Down-Slow puts a rank in the precharge power down
(slow) mode and can only be applied if all the banks are precharged. The DLL is
turned off when the slow precharge power down mode is entered, which leads to
higher power savings, but also requires more time to transition into the active state.

• PWR-UP: Power-Up brings a rank out of low-power mode. The latency of this
command (i.e., the time it takes to transition into the active state) is dependent on the
DRAM state when the command is applied (fast or slow exit modes). If the chip is in
the active power down mode, it retains the contents of the open row-buffer when the
chip is powered up. When the rank is powered down, all pendingrequests to that rank
in the read and write queue note that their next command must be a PWR-UP. Thus,
picking an instruction from the read or write queues will automatically take care of
the power-up and an at-large power-up command (similar to a PWR-DN-FAST or
PWR-DN-SLOW) is not required. Similarly, refresh operations will automatically
handle the exit from the power-down mode.

• Refresh: Forces a refresh to multiple rows in all banks on the rank. If achip is in a
power-down mode before the refresh interval, the rank is woken up by refresh.

• PRE: Forces a precharge to a bank (so the bank is ready for future accesses to new
rows).

• PRE-ALL-BANKS: Forces a precharge to all banks in a rank. This is most useful
when preparing a chip for a power down transition.
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Timing Default value Description
parameter (cycles at

800MHz)

tRCD 11 Row to Column command Delay. The time interval
between row access and data ready at sense amplifiers.

tRP 11 Row Precharge. The time interval that it takes for
a DRAM array to be precharged for another row access.

tCAS 11 Column Access Strobe latency. The time interval
between column access command and the start of
data return by the DRAM device(s). Also known as tCL.

tRC 39 Row Cycle. The time interval between accesses
to different rows in a bank. tRC =tRAS +tRP.

tRAS 28 Row Access Strobe. The time interval between row access
command and data restoration in a DRAM array. A DRAM
bank cannot be precharged until at least tRAS time
after the previous bank activation.

tRRD 5 Row activation to Row activation Delay.
The minimum time interval between two
row activation commands to the same DRAM device.
Limits peak current profile.

tFAW 32 Four (row) bank Activation Window. A rolling time-frame
in which a maximum of four-bank activations can be engaged.
Limits peak current profile in DDR2 and DDR3
devices with more than 4 banks.

tWR 12 Write Recovery time. The minimum time
interval between the end of a write data burst
and the start of a precharge command.
Allows sense amplifiers to restore data to cells.

tWTR 6 Write To Read delay time. The minimum time interval
between the end of a write data burst and
the start of a column-read command. Allows I/O gating
to overdrive sense amplifiers before read command starts.

tRTP 6 Read to Precharge. The time interval between
a read and a precharge command.

tCCD 4 Column-to-Column Delay. The minimum column
command timing, determined by internal burst (prefetch)
length. Multiple internal bursts are used to form longer
burst for column reads. tCCD is 2 beats (1 cycle) for
DDR SDRAM, and 4 beats (2 cycles) for DDR2 SDRAM.

tRFC 128 Refresh Cycle time. The time interval between
Refresh and Activation commands.

tREFI 6240 Refresh interval period.
tCWD 5 Column Write Delay. The time interval between

issuance of the column-write command and
placement of data on the data bus by the DRAM controller.

tRTRS 2 Rank-to-rank switching time. Used in DDR and DDR2
SDRAM memory systems; not used in SDRAM or Direct
RDRAM memory systems. One full cycle in DDR SDRAM.

tPDMIN 4 Minimum power down duration.
tXP 5 Time to exit fast power down

tXPDLL 20 Time to exit slow power down
tDATATRANS 4 Data transfer time from CPU to memory or vice versa.

Table 1: DRAM timing parameters for default memory system configuration [11].
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Timing Parameters. Only some of the above commands can be issued in a given cycle,
depending on the current state of the ranks, banks, channel,and several timing parameters.
The timing parameters listed in Table 1 are honored by USIMM.The values in Table 1 are
typical of many Micron DDR3 chips, with only the tRFC parameter varying as a function
of chip capacity. Consider tWTR as an example timing parameter. The direction of the
memory channel data bus must be reversed every time the memory system toggles between
reads and writes. This introduces timing delays, most notably, the delay between a write
and read to the same rank (tWTR). To reduce the effect of this delay, multiple writes are
typically handled in succession before handling multiple reads in succession. Note that
commands are not required to turn the bus direction; if sufficient time has elapsed after a
write, a read becomes a candidate for issue.

DRAM Refresh. Every DRAM row must be refreshed within a 64 ms window while at
a temperature under 85 degrees Celsius. The refresh processgenerally works as follows.
The memory controller issues a Refresh command every7.8µs (the tREFI parameter).
This command initiates a refresh to multiple rows in all banks on the channel. For a few
hundred nano-seconds (thetRFC parameter) after the refresh command, the DRAM chips
are unavailable to service other commands. The JEDEC standard allows a refresh command
to be delayed by up to 8tREFIs, as long as the average rate of refresh commands is one
per tREFI [30]. USIMM models this by confirming that 8 refreshes are issued in every
8× tREFI time window, with full flexibility for refresh issue within that time window.

3 Simulator Design

3.1 Code Organization and Features

High-Level Overview. This section provides a detailed description of the USIMM code.
USIMM has the following high-level flow. A front-end consumes traces of workloads and
models a reorder buffer (ROB) for each core on the processor.Memory accesses within
each ROB window are placed in read and write queues at the memory controller at each
channel. Every cycle, the simulator examines each entry in the read and write queues
to determine the list of operations that can issue in the nextcycle. A scheduler function
is then invoked to pick a command for each channel from among this list of candidate
commands. This scheduler function is the heart of the MSC andis the code that must be
written by MSC competitors. The underlying USIMM code is responsible for modeling all
the correctness features: DRAM states, DRAM timing parameters, models for performance
and power. The scheduler must only worry about performance/power features: heuristics
to select commands every cycle such that performance, power, and fairness metrics are
optimized. Once the scheduler selects these commands, USIMM updates DRAM state and
marks instruction completion times so they can be eventually retired from the ROB.
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Code Files. The code is organized into the following files:

• main.c : Handles the main program loop that retires instructions, fetches new in-
structions from the input traces, and calls updatememory( ). Also calls functions to
print various statistics.

• memory controller.c : Implements updatememory( ), a function that checks DRAM
timing parameters to determine which commands can issue in this cycle. Also has
functions to calculate power.

• scheduler.c :Function provided by the user to select a command for each channel in
every memory cycle.

• configfile.h memory controller.h params.h processor.h scheduler.h utils.h utlist.h
: various header files.

Inputs. The main( ) function in file main.c interprets the input arguments and initializes
various data structures. The memory system and processor parameters are derived from a
configuration file, specified as the first argument to the program. Each subsequent argument
represents an input trace file. Each such trace is assumed to run on its own processor core.

Simulation Cycle. The simulator then begins a long while loop that executes until all the
input traces have been processed. Each iteration of the while loop represents a newpro-
cessor cycle, possibly advancing the ROB. The default configuration filesassume 3.2 GHz
processor cores and 800 MHz DRAM channels, so four processorcycles are equivalent
to a single memory bus cycle. Memory functions are invoked inprocessor cycles that are
multiples of four.

Commit. The first operation in the while loop is the commit of oldest instructions in
the pipelines of each core. Each core maintains a reorder buffer (ROB) of fixed size that
houses every in-flight instruction in that core. For each core, the commit operation in a
cycle attempts to sequentially retire all completed instructions. Commit is halted in a cycle
when the commit width is reached or when an incomplete instruction is encountered. A
commit width of 2 per processor cycle corresponds to a core IPC of 2 if the trace was
devoid of memory operations. The simulated IPC for most traces will be much less than 2.

Checking for Readiness. The next operation in the while loop is a scan of every memory
instruction in the read and write queues of the memory controller to determine what oper-
ation can issue in this cycle. A single memory instruction translates into multiple memory
system commands (e.g., PRE, ACT, Column-Read). Our scan first computes what the next
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command should be. Note that this changes from cycle to cyclebased on the current row
buffer contents, the low-power state, and whether a refreshis being performed. We also
examine a number of DRAM timing parameters to determine if the command can issue in
this cycle. In addition to examining the read and write queues, we also consider the list
of general commands (refresh, power down/up, precharge) and determine if they can be
issued.

Scheduling. Once a list of candidate memory commands for this cycle is determined by
our scan, a schedule( ) function (in file schedule.c) is invoked. This is the heart of the
simulator and the function that must be provided by contestants in the JWAC MSC. In
each memory cycle, each memory channel is capable of issuingone command. Out of the
candidate memory commands, the schedule function must pickat most one command for
each channel. Once a command has been issued, other commandsthat were deemed “ready
for issue in this cycle” to the same channel will be rejected in case the scheduler tries to
issue them. While each channel is independently scheduled,some co-ordination among
schedulers may be beneficial [13].

Scheduling Algorithm Constraints. To qualify for the MSC, the user’s scheduling algo-
rithm should be implementable within a few processor cyclesand with a hardware storage
budget not exceeding 68 KB. Details must be provided in a 6-page paper that is submitted
with the code. A program committee will evaluate the implementability of the algorithm,
among other things.

Instruction Completion Times. Once the scheduler selects and issues commands, the
simulator updates the state of the banks and appropriately sets the completion time for
the selected memory instructions. This eventually influences when the instruction can be
retired from the ROB, possibly allowing new instructions toenter the processor pipeline.

Advancing the Trace and Trace Format. Next, new instructions are fetched from the
trace file and placed in the ROB. Memory instructions are alsoplaced in the read and
write queues. This process continues until either the ROB orwrite queues are full, or the
fetch width for the core is exhausted. The trace simply specifies if the next instruction
is a memory read (R), memory write (W), or a non-memory instruction (N). In case of
memory reads and writes, a hexadecimal address is also provided in the trace. For the
MSC, we assume that a trace can only address a 4 GB physical address space, so the trace
is limited to 32-bit addresses. Memory writes do not usuallycorrespond to actual program
instructions; they refer to evictions of dirty data from cache. As a simplification, we assume
that each line in the trace corresponds to a different program instruction. Note that this is
an approximation not just because of cache evictions, but because some x86 instructions
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correspond to multiple memory operations and the traces will occasionally include memory
accesses to fetch instructions (and not just data).

Fetch Constraints and Write Drains. We assume that non-memory (N) and memory-
write (W) instructions finish instantaneously, i.e., they are never bottlenecks in the commit
process. Memory-writes will hold up the trace only when the write queue is full. To
prevent this, it is the responsibility of the scheduler to periodically drain writes. Memory-
reads are initially set to complete in the very distant future. The schedule function will later
determine the exact completion time and update it in the ROB data structure. We do not
model an explicit read queue size. The typical length of the read queue is determined by
the number of cores, the size of the ROB, and the percentage ofmemory reads in a ROB.
In other words, we assume that the read queue is not under-provisioned, relative to other
processor parameters. The write queue on the other hand doesneed a capacity limit in our
simulator since a write queue entry need not correspond to a ROB entry.

Refresh Handling. The simulator ensures that in every8× tREFI window, all DRAM
chips on a channel are unavailable for time8 × tRFC, corresponding to eight Refresh
operations. If the user neglects to issue eight refreshes during the8×tREFI time window,
USIMM will forcibly issue any remaining refreshes at the endof the time window. During
this refresh period, the memory channel is unavailable to issue other commands. Each
cycle, the simulator calculates a refresh deadline based onhow many refreshes are pending
for that window and eventually issues the required number ofrefreshes at the deadline. In
order to ensure that the refresh deadline is not missed, the simulator marks a command
ready only if issuing it does not interfere with the refresh deadline. So, when the refresh
deadline arrives, the DRAM chip will be inactive (i.e., the banks will be precharged and in
steady state or some rows will be open but with no on-going data transfer). The rank may
also be in any of the power-down modes, in which case, it will be powered up by the auto
refresh mechanism - the user does not need to issue the power-up command explicitly. At
the end of the refresh period, all banks are in a precharged, powered-up state.

Implicit Scheduling Constraints. It is worth noting that the simulator design steers the
user towards a greedy scheduling algorithm, i.e., the user is informed about what can be
done in any given cycle and the user is prompted to pick one of these options. However, as
we show in the example below, the user must occasionally not be tempted by the options
presented by the simulator. Assume that we are currently servicing writes. A read can only
be issued if timetWTR has elapsed since the last write. Hence, following a write, only
writes are presented as options to the memory scheduler. If the user schedules one of these
writes, the read processing is delayed further. Hence, at some point, the scheduler must
refrain from issuing writes so that timetWTR elapses and reads show up in the list of
candidate commands in a cycle.
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3.2 Example Schedulers

As part of the USIMM distribution, we are releasing a few sample baseline scheduler func-
tions. All of these functions were written in the matter of hours by graduate students in
the Utah Arch group. These functions will make it easier for users to get started with their
scheduling algorithms. We next describe these example memory scheduling algorithms.
Note that these algorithms are not yet optimized and not suitable as “baselines” in papers.
However, such baseline scheduling algorithms will eventually be released on the USIMM
webpages. As users explore their own scheduling algorithms, they are advised to con-
sider the features suggested in several recent papers on memory scheduling (for example:
[10, 14, 21–23]).

FCFS, scheduler-fcfs.c : True FCFS, i.e., servicing reads in the exact order that they
arrive and stalling all later reads until the first is done, leads to very poor bank-level par-
allelism and poor bandwidth utilization. We therefore implement the following variant of
FCFS. Assuming that the read queue is ordered by request arrival time, our FCFS algorithm
simply scans the read queue sequentially until it finds an instruction that can issue in the
current cycle. A separate write queue is maintained. When the write queue size exceeds
a high water mark, writes are drained similarly until a low water mark is reached. The
scheduler switches back to handling reads at that time. Writes are also drained if there are
no pending reads.

Credit-Fair, scheduler-creditfair.c : For every channel, this algorithm maintains a set of
counters for credits for each thread, which represent that thread’s priority for issuing a read
on that channel. When scheduling reads, the thread with the most credits is chosen. Reads
that will be open row hits get a 50% bonus to their number of credits for that round of
arbitration. When a column read command is issued, that thread’s total number of credits
for using that channel is cut in half. Each cycle all threads gain one credit. Write queue
draining happens in an FR-FCFS manner (prioritizing row hits over row misses). The effect
of this scheduler is that threads with infrequent DRAM readswill store up their credits for
many cycles so they will have priority when they need to use them, even having priority for
infrequent bursts of reads. Threads with many, frequent DRAM reads will fairly share the
data bus, giving some priority to open-row hits. Thus, this algorithms tries to capture some
of the considerations in the TCM scheduling algorithm [14].

Power-Down, scheduler-pwrdn.c : This algorithm issues PWR-DN-FAST commands
in every idle cycle. Explicit power-up commands are not required as power-up happens
implicitly when another command is issued. No attempt is made to first precharge all
banks to enable a deep power-down.
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Close-Page, scheduler-close.c :This policy is an approximation of a true close-page
policy. In every idle cycle, the scheduler issues prechargeoperations to banks that last
serviced a column read/write. Unlike a true close-page policy, the precharge is not issued
immediately after the column read/write and we don’t look for potential row buffer hits
before closing the row.

First-Ready-Round-Robin, scheduler-frrr.c: This scheduler tries to combine the ben-
efits of open row hits with the fairness of a round-robin scheduler. It first tries to issue any
open row hits with the “correct” thread-id (as defined by the current round robin flag), then
other row hits, then row misses with the “correct” thread-id, and then finally, a random
request.

MLP-aware, scheduler-mlp.c: The scheduler assumes that threads with many outstand-
ing misses (high memory level parallelism, MLP) are not as limited by memory access
time. The scheduler therefore prioritizes requests from low-MLP threads over those from
high-MLP threads. To support fairness, a request’s wait time in the queue is also consid-
ered. Writes are handled as in FCFS, with appropriate high and low water marks.

3.3 Power Model

The simulator also supports a power model. Relevant memory system statistics are tracked
during the simulation and these are fed to equations based onthose in the Micron power
calculator [1].

Memory Organizations. The power model first requires us to define the type of memory
chip and rank organization being used. The input configuration file (more details on this in
Section 4) specifies the number of channels, ranks, and banks. This organization is used to
support a 4 GB address space per core. As more input traces areprovided, the number of
cores and the total memory capacity grows. Accordingly, we must figure out the memory
organization that provides the required capacity with the specified channels and ranks. For
example, for the 1channel.cfg configuration and 1 input trace file, we must support a 4 GB
address space with 1 channel and 2 ranks. Each rank must support 2 GB, and we choose to
do this with 16 x4 1 Gb DRAM chips. If 1channel.cfg is used with2 input trace files, we
support an 8 GB address space with the same configuration by instead using 16 x4 2 Gb
DRAM chips. For the MSC, we restrict ourselves to the configurations in Table 2. USIMM
figures out this configuration based on the input system configuration file and the number of
input traces. It then reads the corresponding power and timing parameters for that DRAM
chip from the appropriate file in the input/ directory (for example, 1Gbx4.vi). The only
timing parameter that shows variation across DRAM chips is tRFC.
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System config Channels and Number of Memory Organization
file Ranks per Channel cores Capacity of a rank

1channel.cfg 1 ch, 2 ranks/ch 1 4 GB 16 x4 1 Gb chips
1channel.cfg 1 ch, 2 ranks/ch 2 8 GB 16 x4 2 Gb chips
1channel.cfg 1 ch, 2 ranks/ch 4 16 GB 16 x4 4 Gb chips
4channel.cfg 4 ch, 2 ranks/ch 1 4 GB 4 x16 1 Gb chips
4channel.cfg 4 ch, 2 ranks/ch 2 8 GB 8 x8 1 Gb chips
4channel.cfg 4 ch, 2 ranks/ch 4 16 GB 16 x4 1 Gb chips
4channel.cfg 4 ch, 2 ranks/ch 8 32 GB 16 x4 2 Gb chips
4channel.cfg 4 ch, 2 ranks/ch 16 64 GB 16 x4 4 Gb chips

Table 2: Different memory configurations in our power model.

While the simulator can support more than 16 traces with 4channel.cfg and more than 4
traces with 1channel.cfg, the power model does not currently support models other than
those in Table 2. The different allowed DRAM chips and the power parameters for each
are summarized in Table 3.

Parameter 1Gb x4 1Gb x8 1Gb x16 2Gb x4 2Gb x8 4Gb x4 4Gb x8
VDD 1.5 1.5 1.5 1.5 1.5 1.5 1.5
IDD0 70 70 85 42 42 55 55

IDD2P0 12 12 12 12 12 16 16
IDD2P1 30 30 30 15 15 32 32
IDD2N 45 45 45 23 23 28 28
IDD3P 35 35 35 22 22 38 38
IDD3N 45 45 50 35 35 38 38
IDD4R 140 140 190 96 100 147 157
IDD4W 145 145 205 99 103 118 128
IDD5 170 170 170 112 112 155 155

Table 3: Voltage and Current parameters of chips used [3–5]

Power Equations. The power equations are as follows and are based on equationsin the
Micron power calculator [1] and the Micron Memory System Power Technical Note [18]:

ReadPower = (IDD4R − IDD3n) ∗ VDD ∗%Cycles when data is being Read

WritePower = (IDD4W − IDD3n) ∗ VDD ∗%Cycles when data is beingWritten

RefreshPower = (IDD5 − IDD3n) ∗ VDD ∗ TRFC/TREFI

ActivatePower = Max.Activate Power ∗ TRC/(Average gap betweenACTs)

Max.Activate Power = ((IDD0−(IDD3N ∗TRAS+IDD2N ∗(TRC−TRAS))/TRC)∗VDD)
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Background Power is the combination of many components. These components are listed
below

act pdn = IDD3P ∗VDD∗%(T imeSpent in PowerDownwith atleast oneBank Active)

act stby = IDD3N ∗ VDD ∗%(T imeSpent inActive Standby)

pre pdn slow = IDD2P0∗VDD∗%(T imeSpent in PreCharge PowerdownSlowMode)

pre pdn fast = IDD2P1∗VDD∗%(T imeSpent in PreCharge PowerdownFastMode)

pre stby = IDD2N ∗ VDD ∗%(T imeSpent in Standby with all Banks PreCharged)

Finally,

Background Power = act pdn+ act stby + pre pdn slow + pre pdn fast+ pre stby

Power dissipated in the ODT resistors is called the Termination Power. Termination Power
not only depends on the activity in the Rank in question but also depends on the activity in
other Ranks on the same channel. Power dissipated due to Reads and Writes terminating
in the Rank in question is given by

ReadTerminate = pds rd ∗%Cycles when data is being Read from thisRank

WriteTerminate = pds wr ∗%Cycles when data is beingWritten to thisRank

ReadTerminateOther = pds termRoth ∗

%Cycles when data is being Read fromother Ranks

WriteTerminateOther = pds termWoth ∗

%Cycles when data is beingWritten to other Ranks

We use the same rank configuration as assumed in the Micron Technical Note [18], hence
we assume the same ODT power dissipation. The values ofpds rd, pds wr, pds termRoth,
pds termWoth are taken from the Micron Technical Note [18].

Total Chip Power = ReadPower +WritePower + ActivatePower +

BackGroundPower +RefreshPower +ReadTerminatePower +

WriteTerminatePower +ReadTerminateOther +WriteTerminateOther

The above DRAM chip power must be multiplied by the number of DRAM chips to obtain
total memory system power.

12



System Power Model. When computing energy-delay-product (EDP), we must multiply
system power with the square of system execution time. For our 4-channel configuration,
we assume that our system incurs 40 W of constant power overheads for processor uncore
components, I/O, disk, cooling, etc. Each core (including its private LLC) incurs a power
overhead of 10 W while a thread is running and 0 W (perfect power gating) when a thread
has finished. The rest comes from the memory system, with the detailed estimation de-
scribed above. Our 1-channel configuration is supposed to represent a quarter of a future
many-core processor where each channel on the processor chip will be shared by many
simple cores. Consequently, our system power estimate withthis configuration assumes
only 10 W for miscellaneous system power (a total 40 W that is divided by 4) and 5 W
peak power per core (since the core is simpler). Similar to the 4-channel configuration, a
core is power-gated once a thread has finished executing. In either system power model,
the memory system typically accounts for 15-35% of total system power, consistent with
many reported server power breakdowns [7, 8, 15–17].

4 Workloads and Simulator Execution

The USIMM simulator can take multiple workload traces as input. Each workload trace
represents a different program running on a different core,with memory accesses filtered
through a 512 KB private LLC. The JWAC MSC will later construct and release a specific
set of workload traces, including commercial workload traces, that will be used for the
competition. The initial USIMM distribution has a few shorttraces from single-thread
executions of the PARSEC suite that can be used for testing.

The simulator is executed with multiple arguments. The firstargument specifies the config-
uration file for the processor and memory system. The remaining arguments each specify
an input trace file. As many cores are assumed as the number of input trace files. The
traces only contain the instruction types and memory addresses accessed by a program, but
no timing information (the timing is estimated during the simulation). Based on the address
being touched by a memory instruction, the request is routedto the appropriate memory
channel and memory controller.

Some of the traces are derived with publicly available benchmarks. These benchmarks are
executed with Windriver Simics [2] and its g-cache module toproduce the trace. Some of
the traces are derived from commercial workloads. To keep simulation times manageable,
the traces released for the JWAC MSC will be for a few million instructions, but represen-
tative of behavior for a longer execution.

Each thread’s trace is restricted to a 4 GB space. When multiple traces are fed to USIMM,
the address space grows and each trace is mapped to its own 4 GBspace within this address
space. This is implemented by adding bits to the trace address (corresponding to the core
id). These additional bits are interpreted as part of the rowaddress bits. Thus, as more

13



cores are added, the DRAM chips are assumed to have larger capacities.

Modeling a shared cache would require us to pre-determine the threads that will share the
cache. We therefore assume that each thread’s trace is filtered through a private LLC. Since
each core and trace is now independent, we can construct arbitrary multi-core workloads
by feeding multiple traces to USIMM. When generating a tracefor a multi-threaded ap-
plication, we must confirm that a memory access is included ina thread’s trace only after
checking the private LLCs of other threads.

The JWAC MSC will focus on two main system configurations. Thefirst uses a smaller
scale processor core and a single memory channel, while the second uses a more aggres-
sive processor core and four memory channels. The two configurations are summarized
in Table 4 below, with the differences in bold. While a singlechannel appears under-
provisioned by today’s standards, it is more representative of the small channel-to-core
ratio that is likely in future systems.

Parameter 1channel.cfg 4channel.cfg
Processor clock speed 3.2 GHz 3.2 GHz
Processor ROB size 128 160

Processor retire width 2 4
Processor fetch width 4 4

Processor pipeline depth 10 10
Memory bus speed 800 MHz (plus DDR) 800 MHz (plus DDR)

DDR3 Memory channels 1 4
Ranks per channel 2 2

Banks per rank 8 8
Rows per bank 32768× NUMCORES 32768× NUMCORES

Columns (cache lines) per row 128 128
Cache line size 64 B 64 B

Address bits (function of above params) 32+log(NUMCORES) 34+log(NUMCORES)
Write queue capacity 64 96

Address mapping row:rank:bank:chnl:col:blkoff row:col:rank:bank:chnl:blkoff
Write queue bypass latency 10 cpu cycles 10 cpu cycles

Table 4: System configurations used for the JWAC MSC.

The JWAC MSC has three competitive tracks: (1) Performance,(2) Energy-Delay Product
(EDP), and (3) Performance-Fairness Product (PFP). The simulator reports the delay to
finish each program, as well as the power consumed in each rankfor the entire simulation.
To measure the quality of a scheduling algorithm, it is executed for all workloads for both
system configurations. The metric for each track is computedacross all these simulations.

For the Performance track, delay for a scheduler is measuredas the sum of execution times
for all involved programs in all simulations.

EDP for a scheduler is measured as the sum of EDPs from each simulation, where each
simulation’s EDP is measured by multiplying the system power for that simulation and the

14



square of delay to finish the last program in that workload.

For each multi-programmed experiment, we compute the slowdown for each program, rel-
ative to its single-thread execution; the fairness metric for that experiment is the ratio of
the max slowdown to the min slowdown (a number typically between 0 and 1, with 1 being
extremely fair). This corresponds to theStrictF metric described by Vandierendonck and
Seznec [32], and is not very throughput-aware. Our final PFP metric is therefore derived by
dividing the average fairness across all multi-programmedworkloads by the sum of delays
of all involved programs.

The JWAC MSC will provide a spreadsheet with equations to compute all metrics, once
simulation outputs are entered.

5 Infrastructure Shortcomings

As with all simulators, USIMM incorporates a few approximations. We will attempt to fix
some of these shortcomings in future releases of the simulator.

• Trace-based simulators have the inherent shortcoming thatthe traces are fixed and
not influenced by the timing computed during the simulation.This is especially true
for multi-threaded simulations. In reality, a thread in a multi-threaded execution may
spin for more or less time at a barrier depending on executiondelays in each thread;
however, in a trace-based simulation, the behavior of everytrace is fixed and unaware
of when a barrier is actually fulfilled.

• Our current trace format does not capture register operands, nor does it capture data
dependences between instructions. We universally assume that all workloads exhibit
a core IPC of 2.0 if they had a perfect last level cache. By ignoring data depen-
dences, we assume that all memory instructions within a ROB exhibit near-perfect
memory-level parallelism (MLP). This is clearly incorrectwhen (for example) han-
dling pointer-chasing codes that exhibit nearly zero MLP.

• We assume that each trace is independent and accesses a 4 GB address space. When
we execute a multi-programmed workload, we must ensure thateach application
maps to a different portion of the physical address space. This is done by adding
a few more bits to the address to identify the core. These bitsare interpreted as
part of the row address bits. This assumption has a few (perhaps unintended) side-
effects. As more cores (and traces) are used in one simulation, the rows per bank
and hence DRAM chip capacity grows. Also, the trace for each thread of a multi-
threaded application are mapped to a different region, eventhough they may refer to
the same set of addresses. For multi-threaded workloads, the simulator will therefore
under-estimate the row buffer hit rate.
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• Since the EDP metric only measures the time to finish the last program, a scheduling
policy that prioritizes the bottleneck program over the others may appear better than
another scheduling policy that is more fair.

6 Summary

USIMM is a simulation infrastructure that models the memorysystem and interfaces it
with a trace-based processor model and a memory scheduling algorithm. This report sum-
marizes the state of the simulator as of February 2012. We plan to continue adding more
details to the simulator and fixing some of its short-comings.

The most up-to-date weblink for obtaining the latest version of the simulator is:
http://utaharch.blogspot.com/2012/02/usimm.html

Users are welcome to post comments on the above web page. For questions, email the
USIMM developers at usimm@cs.utah.edu. For code updates and announcements, please
subscribe to the usimm-users@cs.utah.edu mailing list by visiting
http://mailman.cs.utah.edu/mailman/listinfo/usimm-users
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Appendices
A Changes in Version 1.1. – March 21st 2012
To switch from version 1.0 to version 1.1, download the new version and copy a previ-
ously written scheduler.c and scheduler.h to the src/ directory in the new version. USIMM
Version 1.1 incorporates the following changes (multiple new features and one bug fix):

• The trace format has changed in two ways. Instead of representing each non-memory
instruction with an “N” on a new line (version 1.0), each memory instruction line
starts with a number that represents the number of precedingnon-memory instruc-
tions (version 1.1). Also, each memory read instruction line ends with the PC of the
instruction that initiated the memory read.

• The instruction PC for a memory read is recorded in the ROB data structure and
the request queue data structure. The simulator does nothing with this PC, but a
scheduler might potentially find it useful.

• The input/ directory includes billion instruction traces for single-threaded executions
for five PARSEC v2.0 pre-compiled binaries. The traces represent the start of the
region of interest in each program. It takes tens of minutes to simulate about a billion
cycles on modern machines. For short tests, users can simulate a subset of the entire
trace. The “runsim” file has been updated to do an example simulation with these
new traces.

• The main.c file has been updated to also accept traces for multi-threaded applica-
tions (a few multi-threaded applications will be included in the final competition
workload). The individual traces of a multi-threaded application must follow a spe-
cific naming convention (starting with “MT0..”, “MT1..”, and so on). Typically, the
addresses from each trace are given a unique prefix that matches their core ID. When
a multi-threaded application is detected, the addresses from each of those trace files
are given a prefix that matches the core ID for thread 0. In other words, addresses
from each trace are given different prefixes, except when they belong to the same
multi-threaded application.

• The scheduler is now allowed to issue an auto-precharge command in the same cy-
cle as a column-read or column-write. This allows the row to be closed without
consuming an additional command bus cycle. The scheduler does this through the
is autoprechargeallowed( ) and issueautoprecharge( ) commands.

• The scheduler is allowed to activate an arbitrary row even ifthere is no pending re-
quest in the queues for that row. This is done via the issueactivatecommand( )
and isactivateallowed( ) commands. The number of such speculative activations is
tracked by statsnum activatespec. By default, we assume that all of these activa-
tions are done for future column-reads. This count is therefore used to influence the
row buffer hit rates for memory reads.

• Bug fix: The function issuerefreshcommand has been updated to correctly set the
next cmd timing constraints based on current DRAM state. In the earlier code,
the dramstate was being set to REFRESHING before the state-dependent next cmd
times were being calculated. This change has a negligible impact on performance.
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B Changes in Version 1.2. – April 7th 2012

To switch from version 1.0 or 1.1 to version 1.2, download thenew version and copy
a previously written scheduler.c and scheduler.h to the src/ directory in the new version.
In going from version 1.1 to version 1.2, only the code in file memorycontroller.c has
changed. We’ve also removed a few terms from the license to make it easier for groups to
use the simulator. USIMM Version 1.2 incorporates the following changes:

• Bug fix: The cleanqueue function in the file memorycontroller.c has been updated
to delete the read and write queue nodes after the corresponding request has been
serviced. This fixes a memory leak in the simulator.

• Bug fix: The issuerequest function in the file memorycontroller.c has been updated
to fix a bug in the calculation of the nextwrite variable for all banks on the channel
after a read or write command is issued. In version 1.1, the next write variable was
set to a larger value than what it ideally should have been. The net effect of the
change is that now a write command following a read or write command can be
issued earlier than in version 1.1.

• Bug fix: In the function updatememory in the file memorycontroller.c, a condition
has been added to make sure that forced refreshes are not issued if the mandatory 8
(or more) refresh commands have already been issued in the refresh window.

• Bug fix: In the function issuepowerdowncommand, before issuing a powerdown-
slow command, the function ispowerdownslow allowed is now being called cor-
rectly to check the issuability of the command. Earlier, there might have been situa-
tions where a powerdownslow would be issued even if only a powerdown-fast was
allowed by the timing constraints (imposed solely by the refresh deadline).

• Bug fix: In the function issueautoprecharge in the memorycontroller.c file, the
calculation of the commencement of the auto-precharge command is now updated to
be the maximum of the nextpre timing set by earlier commands and the first cycle
when a precharge can be issued following a read or write command.

• Bug fix: Initialized the userptr field in the requestt structure to NULL when a new
read or write entry is enqueued in the corresponding queue. This variable can now
be checked in the schedule function to determine if a read or write node has been
recently enqueued; this allows the user to initialize otheruser-defined variables soon
after a request is enqueued.
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C Changes in Version 1.3. – April 16th 2012

To switch from version 1.0 or 1.1 or 1.2 to version 1.3, download the new version and copy
a previously written scheduler.c and scheduler.h to the src/ directory in the new version.

The version 1.3 distribution now also includes a subset of the workloads that will be used
for the final competition. Here are the noteworthy points about the workloads:

• The following ten benchmark traces are included in the distribution (13 files):

1. black: A single-thread run from PARSEC’s blackscholes.

2. face: A single-thread run from PARSEC’s facesim.

3. ferret: A single-thread run from PARSEC’s ferret.

4. fluid: A single-thread run from PARSEC’s fluidanimate.

5. freq: A single-thread run from PARSEC’s freqmine.

6. stream:A single-thread run from PARSEC’s streamcluster.

7. swapt:A single-thread run from PARSEC’s swaptions.

8. comm1:A trace from a server-class transaction-processing workload.

9. comm2:A trace from a server-class transaction-processing workload.

10. MT*-canneal: A four-thread run from PARSEC’s canneal, organized in four
files, MT0-canneal to MT3-canneal.

• Benchmarks black, face, ferret, freq, stream have about 500million instructions.
These instructions were selected from 5 billion instruction traces with a methodology
similar to that of Simpoint1.

• Benchmarks fluid and swapt are also defined with the Simpoint-like methodology
described for the other PARSEC benchmarks. The only difference is that the traces
include 750 million instructions so they have execution times similar to the other
benchmarks.

• Benchmarks comm1 and comm2 are roughly 500 million instruction windows that
are representative of commercial transaction-processingworkloads.

1SimPoint [28] is used to generate traces which are representative of the benchmarks. SimPoint uses
Basic Block Vectors(BBVs) [28] to recognise intervals of the execution which can be used to replicate the
behavior of the benchmark. It assigns weights to each interval, which can be applied to the results obtained
from each interval.

In our model, each benchmark is simulated for 5 billion instructions with interval sizes of 5 million in-
structions. A number of metrics are collected from each interval, including number of LLC misses, number
of reads, number of writes, number of floating-point, integer, and branch instructions. The collection of these
metrics forms the BBV that is used with SimPoint. The BBVs areclassified into 10 clusters using SimPoint.
The number of intervals selected from each cluster depends on the weight of each cluster. The final trace of
500M instructions is the combination of 100 intervals, taken from the large trace.
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• The 4-thread canneal traces represent the first 500 million instructions executed by
each thread once the region of interest is started. While allof the other traces were
collected with 512 KB private LLCs for each single-thread program, the 4-thread
canneal traces assumed a 2 MB shared LLC for the four cores. A write in a trace file
represents the dirty block evicted by a block that is being fetched by that thread.

• The 10 traces are used to form 10 different workloads that will be used for the com-
petition. All 10 workloads are run with 4channel.cfg, and the first 8 are also run with
1channel.cfg. The numbers from these 18 simulations will beused to compute the
metrics that must be reported in the papers being submitted to the competition. The
runsim file in the usimm directory lists all 18 simulations. The competition web-
site will also have pointers to scripts, excel files, and latex table templates that can
be used to compute and report the final metrics. The final competition results will
be based on these 18 experiments and a few more; the additional experiments and
workloads will be announced after the submission deadline.The 10 workloads are:

1. comm2

2. comm1 comm1

3. comm1 comm1 comm2 comm2

4. MT0-canneal MT1-canneal MT2-canneal MT3-canneal

5. fluid swapt comm2 comm2

6. face face ferret ferret

7. black black freq freq

8. stream stream stream stream

9. fluid fluid swapt swapt comm2 comm2 ferret ferret

10. fluid fluid swapt swapt comm2 comm2 ferret ferret black black freq freq comm1
comm1 stream stream

• The Fairness metric for the competition is being modified to be the following. Fair-
ness is being defined as the maximum slowdown for any thread inthe workload,
relative to a single-program execution of that thread with an FCFS scheduler (a high
number is bad). The final PFP metric will multiply the{average of maximum slow-
downs across all experiments} and the{sum of execution times of all programs in
those experiments}. For the PFP metric, only 14 of the 18 experiments will be used
(the single-program comm2 workload and the multi-threadedcanneal workload will
not be used to evaluate fairness).
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In going from version 1.2 to version 1.3, the code in files memory controller.c, mem-
ory controller.h and main.c have changed. USIMM Version 1.3 incorporates the following
changes over version 1.2:

• Bug fix: The isT FAW met is modified to correctly enforce the tFAW condition.
Earlier in a tFAW rolling window, it would be possible for the scheduler toerro-
neously issue a maximum of five activations, (assuming the tRRD timing condition
was met). Now, the scheduler can issue a maximum of 4 activatecommands in the
t FAW window.

• Bug fix: Changed the variable casissuedcurrentcycle to keep track of COLRD or
COL WR commands issued to each bank. Earlier, the variable only kept track of
whether a COLRD or COL WR had been issued in the current simulation cycle to
a channel before issuing an autoprecharge. Also, the variable is now reset when an
autoprecharge command is issued. This has no impact on correct implementations
of the autoprecharge functionality. The change prevents schedulers from incorrectly
issuing multiple auto-precharges to a channel in the same cycle and also prevents an
autoprecharge to be sent to a bank that did not have a COLRD or COL WR issued
to it that very cycle.

• Changes to statistics: New variables, statsreadsmerged and statswrites merged,
counting the number of merged reads and writes respectively, have been exposed to
the scheduler. The variables fetched and committed (which,respectively, contain
the fetched and committed instruction counts for each simulated core) have been mi-
grated from the file main.c to memorycontroller.h to allow the scheduling algorithm
to use this information. The simulator also now prints the sum of execution times on
each core and the EDP metric for the simulation.
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