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Abstract

USIMM, the Utah Simulated Memory Module, is a DRAM main memsystem simulator
that is being released for use in the Memory Scheduling Cikamspip (MSC), organized
in conjunction with ISCA-39. MSC is part of the JILP Workstsogn Computer Architec-
ture Competitions (JWAC). This report describes the sitmutainfrastructure and how it
will be used within the competition.



1 Introduction

The Journal of Instruction Level Parallelism (JILP) orgaas an annual Workshop on Com-
puter Architecture Competitions (JWAC). The 2012 compmiiis a Memory Scheduling
Championship (MSC) that will be held in conjuction with ISE3® in Portland, Oregon.

The memory sub-system is an important component in all coen@ystems, accounting
for a significant fraction of execution time and energy. Wiaeprocessor core fails to
find relevant data in processor caches, it sends a requdst tneémory controller on the
processor chip. The memory controller is connected to DRAlp< on DIMMSs, via a
memory channel. The memory controller manages a queue dingememory requests
and schedules them, subject to various timing constraifitee memory latency is the
sum of queuing delay and the time to fetch a cache line fronDIRAM chip row buffer.
Many studies have shown that the queuing delay is a signifilamponent of memory
access time and it is growing as more processor cores shaeenany channel [6, 10, 14,
22,23]. The queuing delay for a request is heavily impactethk memory scheduling
algorithm. The memory scheduling algorithm can determingewait time for individual
requests, the efficiency of the row buffer, the efficiency andiling writes, parallelism
across ranks and banks, fairness across threads, parallglthin threads, etc. There are
many considerations in designing memory schedulers ana senent algorithms have
significantly advanced the field [10, 14, 21-23]. The Memoche&dluling Championship
hopes to provide a forum to not only compare these many algosi within a common
evaluation framework, but also stimulate research in aromant area.

This report describes the common simulation infrastreciaidetail. It describes the mod-
ules within the simulator code, the traces used to repregeriioads, and the evaluation
metrics that will be used for the competition. It also pre@sdsome guidelines that will

help contestants develop efficient scheduling algorithiVe expect that the simulation
infrastructure will continue to be used beyond the comjoetjtand will facilitate research

and education in the area. The Utah Arch group will contimueetease extensions of the
simulator.

2 Memory System Overview

Memory Basics. In a conventional memory system, a memory controller on ttoe p
cessor is connected to dual in-line memory modules (DIMMa)an off-chip electrical
memory channel. Modern processors have as many as four mewmwtrollers and four
DDR3 memory channels [19, 31]. While other memory channel memory controller
topologies exist (such as Intel's SMB [25]), our infrastiure is restricted to schedulers for
DDR3 channels and DIMMs.



A modern DDR3 channel typically has a 64-bit data bus and &i28ddress/command
bus that can support 1-2 DIMMs. Each DIMM is typically orgzeud into 1-4 ranks. When
the memory controller issues a request for a cache line, RAI chips in a rank work
together to service the request, i.e., a cache line is stapeoss all chips in a rank. A rank
and its constituent DRAM chips are also partitioned intotiplé (4-16) banks. Each bank
can process a different cache line request in parallel, Ibbaaks in the active rank must
sequentially share the data and command wires of the merhannel.

Row Buffer Management. Each bank has a row buffer storing the last row accessed
within the bank. If a request can be serviced by data alreegiyept in an open row buffer,
the row buffer hit takes less time and energy. If a row bufemlikely to yield future hits, it

is beneficial to close the row and precharge the bitlinesattiie bank can quickly access a
new row when required. Many commercial memory controlleses proprietary algorithms

to decide when a row must be closed; several patents andspapestruct mechanisms for
prediction-based row closure [9, 12, 20, 24, 26, 27, 29, 33].

Address Mapping. A cache line is placed entirely in one bank. The next cacleedould
be placed in the same row, or the next row in the same bankgeardkt bank in the same
rank, or in the next rank in the same channel, or in the nextrobla The data mapping pol-
icy determines the extent of parallelism that can be lewedtagithin the memory system.
The MSC focuses on two different processor-memory conftgura (more details in Sec-
tion 4); each uses a different data mapping policy. The fosfiguration {channel with
ADDRESSMAPPING set to 1) tries to maximize row buffer hits and placeasecutive
cache lines in the same row, i.e., the lower-order bits pittr@nt columns in a given row.
The address bits are interpreted as follows, from left (M&B)ght (LSB):

lchannel mapping policy :: row : rank : bank : channel : column : blockof f set

The second configuratiod¢hannel with ADDRESSMAPPING set to 0) tries to maxi-
mize memory access parallelism by scattering consecukbek® across channels, ranks,
and banks. The address bits are interpreted as follows:

4dchannel mapping policy :: row : column : rank : bank : channel : blockof fset

Memory Commands. Inevery cycle, the memory controller can either issue a canun
that advances the execution of a pending read or write, omar@nd that manages the
general DRAM state. The four commands corresponding to dipgmead or write are:

e PRE: Precharge the bitlines of a bank so a new row can be read out.

e ACT: Activate a new row into the bank’s row buffer.
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e COL-RD: Bring a cache line from the row buffer back to the processor.

e COL-WR: Bring a cache line from the processor to the row buffer.

The six general “at-large” commands used to manage gen&AMDstate and not corre-
sponding to an entry in the read or write queues are:

e PWR-DN-FAST: Power-Down-Fast puts a rank in a low-power mode with quigk ex
times. This command can put the rank into one of two stateBvegoower down or
precharge power down (fast). If all the banks in the DRAM dmig precharged when
the PWR-DN-FAST command is applied, the chip goes into tleehmrge power
down mode. However, if even a single bank has a row open, tiget@nsitions
into the active power down mode. The power consumption o&tiiee power down
mode is higher than that of the precharge power down modeotmthese states, the
on-chip DLL is active. This allows the chip to power-up withnmmum latency. To
ensure transition into the lower power state, it may be resogdo first precharge all
banks in the rank (more on this below).

e PWR-DN-SLOW: Power-Down-Slow puts a rank in the precharge power down
(slow) mode and can only be applied if all the banks are pmgelta The DLL is
turned off when the slow precharge power down mode is entevadth leads to
higher power savings, but also requires more time to trinsinto the active state.

e PWR-UP: Power-Up brings a rank out of low-power mode. The latencyhig t
command (i.e., the time it takes to transition into the acstate) is dependent on the
DRAM state when the command is applied (fast or slow exit spdéthe chipis in
the active power down mode, it retains the contents of thea ope-buffer when the
chip is powered up. When the rank is powered down, all pendiqgests to that rank
in the read and write queue note that their next command neustt®/VR-UP. Thus,
picking an instruction from the read or write queues will@uatically take care of
the power-up and an at-large power-up command (similar t&V& ®ON-FAST or
PWR-DN-SLOW) is not required. Similarly, refresh operasowill automatically
handle the exit from the power-down mode.

e Refresh: Forces a refresh to multiple rows in all banks on the rank.dhig is in a
power-down mode before the refresh interval, the rank isamalp by refresh.

e PRE: Forces a precharge to a bank (so the bank is ready for futoesses to new
rows).

e PRE-ALL-BANKS: Forces a precharge to all banks in a rank. This is most useful
when preparing a chip for a power down transition.



Timing
parameter

Default value
(cycles at
800MHz)

Description

tRCD

tRP

tCAS

tRC

tRAS

tRRD

tFAW

tWR

tWTR

tRTP

tCCD

tRFC

tREFI
tCWD

tRTRS

tPDMIN
tXP
tXPDLL
tDATATRANS

11

11

11

39

28

32

12

128

6240

Row to Column command Delay. The time interval
between row access and data ready at sense amplifiers.
Row Precharge. The time interval that it takes for

a DRAM array to be precharged for another row access.
Column Access Strobe latency. The time interval
between column access command and the start of

data return by the DRAM device(s). Also known as tCL.
Row Cycle. The time interval between accesses

to different rows in a bank. tRC =tRAS +tRP.

Row Access Strobe. The time interval between row acces$

command and data restoration in a DRAM array. A DRAM
bank cannot be precharged until at least tRAS time

after the previous bank activation.

Row activation to Row activation Delay.

The minimum time interval between two

row activation commands to the same DRAM device.
Limits peak current profile.

Four (row) bank Activation Window. A rolling time-frame

in which a maximum of four-bank activations can be engag
Limits peak current profile in DDR2 and DDR3

devices with more than 4 banks.

Write Recovery time. The minimum time

interval between the end of a write data burst

and the start of a precharge command.

Allows sense amplifiers to restore data to cells.

Write To Read delay time. The minimum time interval
between the end of a write data burst and

the start of a column-read command. Allows I/O gating

to overdrive sense amplifiers before read command starts,
Read to Precharge. The time interval between

aread and a precharge command.

Column-to-Column Delay. The minimum column
command timing, determined by internal burst (prefetch)
length. Multiple internal bursts are used to form longer
burst for column reads. tCCD is 2 beats (1 cycle) for

DDR SDRAM, and 4 beats (2 cycles) for DDR2 SDRAM.
Refresh Cycle time. The time interval between

Refresh and Activation commands.

Refresh interval period.

Column Write Delay. The time interval between

issuance of the column-write command and

placement of data on the data bus by the DRAM controller|
Rank-to-rank switching time. Used in DDR and DDR2
SDRAM memory systems; not used in SDRAM or Direct
RDRAM memory systems. One full cycle in DDR SDRAM.,
Minimum power down duration.

Time to exit fast power down

Time to exit slow power down

Data transfer time from CPU to memory or vice versa.

Table 1: DRAM timing parameters for default memory systemfiguration [11].
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Timing Parameters. Only some of the above commands can be issued in a given cycle,
depending on the current state of the ranks, banks, chaamekeveral timing parameters.
The timing parameters listed in Table 1 are honored by USININe values in Table 1 are
typical of many Micron DDR3 chips, with only the tRFC paraeretarying as a function
of chip capacity. Consider tWTR as an example timing paramethe direction of the
memory channel data bus must be reversed every time the meysiem toggles between
reads and writes. This introduces timing delays, most myptéie delay between a write
and read to the same rank (tWTR). To reduce the effect of #lmsydmultiple writes are
typically handled in succession before handling multiglads in succession. Note that
commands are not required to turn the bus direction; if gaffictime has elapsed after a
write, a read becomes a candidate for issue.

DRAM Refresh. Every DRAM row must be refreshed within a 64 ms window while at

a temperature under 85 degrees Celsius. The refresh prgpeesglly works as follows.
The memory controller issues a Refresh command eveyys (thetREF I parameter).
This command initiates a refresh to multiple rows in all bawok the channel. For a few
hundred nano-seconds (theF'C parameter) after the refresh command, the DRAM chips
are unavailable to service other commands. The JEDEC sthalliews a refresh command

to be delayed by up to BREF'Is, as long as the average rate of refresh commands is one
pertREFI [30]. USIMM models this by confirming that 8 refreshes araiessin every

8 x tREFI time window, with full flexibility for refresh issue withinhat time window.

3 Simulator Design

3.1 Code Organization and Features

High-Level Overview. This section provides a detailed description of the USIMMe0o
USIMM has the following high-level flow. A front-end consumaces of workloads and
models a reorder buffer (ROB) for each core on the proceddemory accesses within
each ROB window are placed in read and write queues at the nyezoatroller at each
channel. Every cycle, the simulator examines each entrjpenréad and write queues
to determine the list of operations that can issue in the ogote. A scheduler function
is then invoked to pick a command for each channel from ambigylist of candidate
commands. This scheduler function is the heart of the MSCisttte code that must be
written by MSC competitors. The underlying USIMM code isgessible for modeling all
the correctness features: DRAM states, DRAM timing paransetnodels for performance
and power. The scheduler must only worry about performaiogegr features: heuristics
to select commands every cycle such that performance, p@andrfairness metrics are
optimized. Once the scheduler selects these commands,M8jMates DRAM state and
marks instruction completion times so they can be eventuetired from the ROB.
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Code Files. The code is organized into the following files:

e main.c : Handles the main program loop that retires instructionshfes new in-
structions from the input traces, and calls upda&mory( ). Also calls functions to
print various statistics.

e memory_controller.c : Implements updatenemory(), a function that checks DRAM
timing parameters to determine which commands can issugdrcycle. Also has
functions to calculate power.

e scheduler.c :Function provided by the user to select a command for eaatmehan
every memory cycle.

¢ configfile.h memory controller.h params.h processor.h scheduler.h utils.h dist.h
. various header files.

Inputs. The main() function in file main.c interprets the input argants and initializes
various data structures. The memory system and processongters are derived from a
configuration file, specified as the first argument to the @wgrEach subsequent argument
represents an input trace file. Each such trace is assumed tmrits own processor core.

Simulation Cycle. The simulator then begins a long while loop that executeisaihthe
input traces have been processed. Each iteration of the \dup represents a negvo-
cessor cyclgpossibly advancing the ROB. The default configuration flesume 3.2 GHz
processor cores and 800 MHz DRAM channels, so four processbes are equivalent
to a single memory bus cycle. Memory functions are invokegratessor cycles that are
multiples of four.

Commit. The first operation in the while loop is the commit of oldesdtinctions in

the pipelines of each core. Each core maintains a reordé&ritROB) of fixed size that
houses every in-flight instruction in that core. For eaclectine commit operation in a
cycle attempts to sequentially retire all completed irdtams. Commit is halted in a cycle
when the commit width is reached or when an incomplete insbm is encountered. A
commit width of 2 per processor cycle corresponds to a co@dP?2 if the trace was
devoid of memory operations. The simulated IPC for mosesaill be much less than 2.

Checking for Readiness. The next operation in the while loop is a scan of every memory
instruction in the read and write queues of the memory ctiatrto determine what oper-
ation can issue in this cycle. A single memory instructi@msiates into multiple memory
system commands (e.g., PRE, ACT, Column-Read). Our scardimgputes what the next

6



command should be. Note that this changes from cycle to daded on the current row
buffer contents, the low-power state, and whether a refiedeing performed. We also
examine a number of DRAM timing parameters to determinedfdbmmand can issue in
this cycle. In addition to examining the read and write q@ewee also consider the list
of general commands (refresh, power down/up, prechargedatermine if they can be
issued.

Scheduling. Once a list of candidate memory commands for this cycle isrdeéhed by
our scan, a schedule( ) function (in file schedule.c) is imebkThis is the heart of the
simulator and the function that must be provided by contgstan the JWAC MSC. In
each memory cycle, each memory channel is capable of issm@gommand. Out of the
candidate memory commands, the schedule function mustpiciost one command for
each channel. Once a command has been issued, other conthngtrwisre deemed “ready
for issue in this cycle” to the same channel will be rejectedase the scheduler tries to
issue them. While each channel is independently schedsitede co-ordination among
schedulers may be beneficial [13].

Scheduling Algorithm Constraints. To qualify for the MSC, the user’s scheduling algo-
rithm should be implementable within a few processor cyales with a hardware storage
budget not exceeding 68 KB. Details must be provided in agegeaper that is submitted
with the code. A program committee will evaluate the impletaeility of the algorithm,
among other things.

Instruction Completion Times. Once the scheduler selects and issues commands, the
simulator updates the state of the banks and appropriagédytse completion time for

the selected memory instructions. This eventually inflesnehen the instruction can be
retired from the ROB, possibly allowing new instructionstaer the processor pipeline.

Advancing the Trace and Trace Format. Next, new instructions are fetched from the
trace file and placed in the ROB. Memory instructions are glsged in the read and
write queues. This process continues until either the ROBriie queues are full, or the
fetch width for the core is exhausted. The trace simply $gscif the next instruction
is a memory read (R), memory write (W), or a non-memory irgdtom (N). In case of
memory reads and writes, a hexadecimal address is alsodpbun the trace. For the
MSC, we assume that a trace can only address a 4 GB physicalsadspace, so the trace
is limited to 32-bit addresses. Memory writes do not usueadisrespond to actual program
instructions; they refer to evictions of dirty data from kbacAs a simplification, we assume
that each line in the trace corresponds to a different prognstruction. Note that this is
an approximation not just because of cache evictions, btause some x86 instructions
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correspond to multiple memory operations and the tracé®wghsionally include memory
accesses to fetch instructions (and not just data).

Fetch Constraints and Write Drains. We assume that non-memory (N) and memory-
write (W) instructions finish instantaneously, i.e., theg aever bottlenecks in the commit
process. Memory-writes will hold up the trace only when th&tevqueue is full. To
prevent this, it is the responsibility of the scheduler tagdically drain writes. Memory-
reads are initially set to complete in the very distant fatdrhe schedule function will later
determine the exact completion time and update it in the R&# dtructure. We do not
model an explicit read queue size. The typical length of #sglrqueue is determined by
the number of cores, the size of the ROB, and the percentagemiory reads in a ROB.
In other words, we assume that the read queue is not undeisjamoed, relative to other
processor parameters. The write queue on the other handhdedsa capacity limit in our
simulator since a write queue entry need not correspond OB éhtry.

Refresh Handling. The simulator ensures that in eve&w tREF'I window, all DRAM
chips on a channel are unavailable for tilex tRE'C', corresponding to eight Refresh
operations. If the user neglects to issue eight refreshesgiihe8 x t RE F'I time window,
USIMM will forcibly issue any remaining refreshes at the eridhe time window. During
this refresh period, the memory channel is unavailable saesother commands. Each
cycle, the simulator calculates a refresh deadline baséwmmany refreshes are pending
for that window and eventually issues the required numbeefoéshes at the deadline. In
order to ensure that the refresh deadline is not missed,iti@ator marks a command
ready only if issuing it does not interfere with the refregadline. So, when the refresh
deadline arrives, the DRAM chip will be inactive (i.e., thartks will be precharged and in
steady state or some rows will be open but with no on-going ttansfer). The rank may
also be in any of the power-down modes, in which case, it véilpbwered up by the auto
refresh mechanism - the user does not need to issue the pgvoermmand explicitly. At
the end of the refresh period, all banks are in a prechargedeed-up state.

Implicit Scheduling Constraints. It is worth noting that the simulator design steers the
user towards a greedy scheduling algorithm, i.e., the @s@formed about what can be
done in any given cycle and the user is prompted to pick onlkeesfd options. However, as
we show in the example below, the user must occasionally @déimpted by the options
presented by the simulator. Assume that we are currentycaeg writes. A read can only
be issued if timg¢W T R has elapsed since the last write. Hence, following a writdy o
writes are presented as options to the memory schedulée lider schedules one of these
writes, the read processing is delayed further. Hence, raegmwint, the scheduler must
refrain from issuing writes so that timé@V T R elapses and reads show up in the list of
candidate commands in a cycle.



3.2 Example Schedulers

As part of the USIMM distribution, we are releasing a few séangaseline scheduler func-
tions. All of these functions were written in the matter oun® by graduate students in
the Utah Arch group. These functions will make it easier feens to get started with their
scheduling algorithms. We next describe these example mesaheduling algorithms.

Note that these algorithms are not yet optimized and noaigtas “baselines” in papers.
However, such baseline scheduling algorithms will evehtdee released on the USIMM

webpages. As users explore their own scheduling algorithiney are advised to con-
sider the features suggested in several recent papers onmneameduling (for example:

[10, 14,21-23]).

FCFS, scheduler-fcfs.c : True FCFS, i.e., servicing reads in the exact order that they
arrive and stalling all later reads until the first is donede to very poor bank-level par-
allelism and poor bandwidth utilization. We therefore ieplent the following variant of
FCFS. Assuming that the read queue is ordered by requesdldime, our FCFS algorithm
simply scans the read queue sequentially until it finds amuogon that can issue in the
current cycle. A separate write queue is maintained. Whermwiflite queue size exceeds

a high water mark, writes are drained similarly until a lowtgramark is reached. The
scheduler switches back to handling reads at that time.eé/ate also drained if there are
no pending reads.

Credit-Fair, scheduler-creditfair.c :  For every channel, this algorithm maintains a set of
counters for credits for each thread, which represent tinaat!’s priority for issuing a read
on that channel. When scheduling reads, the thread with ds onedits is chosen. Reads
that will be open row hits get a 50% bonus to their number oflitsefor that round of
arbitration. When a column read command is issued, thaad'se¢otal number of credits
for using that channel is cut in half. Each cycle all threadsm @ne credit. Write queue
draining happens in an FR-FCFS manner (prioritizing row titer row misses). The effect
of this scheduler is that threads with infrequent DRAM readkstore up their credits for
many cycles so they will have priority when they need to usetheven having priority for
infrequent bursts of reads. Threads with many, frequent BIR@ads will fairly share the
data bus, giving some priority to open-row hits. Thus, thg®eathms tries to capture some
of the considerations in the TCM scheduling algorithm [14].

Power-Down, scheduler-pwrdn.c : This algorithm issues PWR-DN-FAST commands
in every idle cycle. Explicit power-up commands are not regglas power-up happens
implicitly when another command is issued. No attempt is ensdfirst precharge all
banks to enable a deep power-down.



Close-Page, scheduler-close.c :This policy is an approximation of a true close-page
policy. In every idle cycle, the scheduler issues prechayggrations to banks that last
serviced a column read/write. Unlike a true close-pagecpoilhe precharge is not issued
immediately after the column read/write and we don’t look potential row buffer hits
before closing the row.

First-Ready-Round-Robin, scheduler-frrr.c:  This scheduler tries to combine the ben-
efits of open row hits with the fairness of a round-robin sched It first tries to issue any
open row hits with the “correct” thread-id (as defined by therent round robin flag), then
other row hits, then row misses with the “correct” threadadd then finally, a random
request.

MLP-aware, scheduler-mlp.c: The scheduler assumes that threads with many outstand-
ing misses (high memory level parallelism, MLP) are not astkéd by memory access
time. The scheduler therefore prioritizes requests fromNbLP threads over those from
high-MLP threads. To support fairness, a request’s waig timthe queue is also consid-
ered. Writes are handled as in FCFS, with appropriate higham water marks.

3.3 Power Model

The simulator also supports a power model. Relevant menystgs statistics are tracked
during the simulation and these are fed to equations bas¢dose in the Micron power
calculator [1].

Memory Organizations. The power model first requires us to define the type of memory
chip and rank organization being used. The input configamdtie (more details on this in
Section 4) specifies the number of channels, ranks, and b&hksorganization is used to
support a 4 GB address space per core. As more input tracesosided, the number of
cores and the total memory capacity grows. Accordingly, vstfigure out the memory
organization that provides the required capacity with frecgied channels and ranks. For
example, for the 1channel.cfg configuration and 1 inpuitfde, we must support a 4 GB
address space with 1 channel and 2 ranks. Each rank mustrs@gpB, and we choose to
do this with 16 x4 1 Gb DRAM chips. If 1channel.cfg is used watinput trace files, we
support an 8 GB address space with the same configuratiorstganh using 16 x4 2 Gb
DRAM chips. For the MSC, we restrict ourselves to the configjons in Table 2. USIMM
figures out this configuration based on the input system coraigpn file and the number of
input traces. It then reads the corresponding power andgmarameters for that DRAM
chip from the appropriate file in the input/ directory (foraemple, 1Gbx4.vi). The only
timing parameter that shows variation across DRAM chipREQ.
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System configg  Channelsand | Number of | Memory Organization

file Ranks per Channgl cores Capacity of a rank
1channel.cfg| 1 ch, 2ranks/ch 1 4GB 16 x4 1 Gb chips
1channel.cfg| 1 ch, 2ranks/ch 2 8 GB 16 x4 2 Gb chips

1channel.cfg| 1 ch, 2ranks/ch
4channel.cfg| 4 ch, 2 ranks/ch
4channel.cfg| 4 ch, 2 ranks/ch
4channel.cfg| 4 ch, 2 ranks/ch
4channel.cfg| 4 ch, 2 ranks/ch
4channel.cfg| 4 ch, 2 ranks/ch

16 GB | 16 x4 4 Gb chips
4GB | 4x161 Gb chips
8 GB 8 x8 1 Gb chips
16 GB | 16 x4 1 Gb chips|
32GB | 16 x4 2 Gb chips
64 GB | 16 x4 4 Gb chips

-
c»OC)-&I\)I—‘-b

Table 2: Different memory configurations in our power model.

While the simulator can support more than 16 traces with diecblacfg and more than 4
traces with 1channel.cfg, the power model does not cugresugbport models other than
those in Table 2. The different allowed DRAM chips and the poparameters for each
are summarized in Table 3.

| Parameter | 1Gb x4 | 1Gb x8 | 1Gb x16 | 2Gb x4 | 2Gb x8 | 4Gb x4 | 4Gb x8 |

VDD 15 15 15 1.5 15 1.5 15

IDDO 70 70 85 42 42 55 55
IDD2PO0O 12 12 12 12 12 16 16
IDD2P1 30 30 30 15 15 32 32
IDD2N 45 45 45 23 23 28 28
IDD3P 35 35 35 22 22 38 38
IDD3N 45 45 50 35 35 38 38
IDD4R 140 140 190 96 100 147 157
IDD4W 145 145 205 99 103 118 128

IDD5 170 170 170 112 112 155 155

Table 3: Woltage and Current parameters of chips used [3-5]

Power Equations. The power equations are as follows and are based on equatithres
Micron power calculator [1] and the Micron Memory System Rowechnical Note [18]:

ReadPower = (Ippsr — Ippsn) * Vpp * %Cycles when data is being Read
WritePower = (Ippaw — Ippsn) * Vpp * %Cycles when data is being Written
RefreshPower = (Ipps — Ippasn) * Vop * Trrc/TrEFT

Activate Power = Max. Activate Power x Tre /(Average gap between ACT's)

Maz. Activate Power = ((Ippo— (Ippsn *Tras+ Ippen * (Tre — Tras))/Tre) * Vo)
11



Background Power is the combination of many componentssd hemponents are listed
below

act_pdn = Ippsp*Vpp*%(Time Spent in Power Down with atleast one Bank Active)
act_stby = Ippsn * Vpp * %(Time Spent in Active Standby)

pre_pdn_slow = Ippepo*Vpp*%(Time Spent in PreCharge Powerdown Slow Mode)
pre_pdn_fast = Ippop1*Vpp* % (Time Spent in PreCharge Powerdown Fast Mode)
pre_stby = IDD2N x Vpp x %(Time Spent in Standby with all Banks PreCharged)
Finally,

Background Power = act_pdn + act_stby + pre_pdn_slow + pre_pdn_fast + pre_stby
Power dissipated in the ODT resistors is called the Terrrand&®ower. Termination Power
not only depends on the activity in the Rank in question k& depends on the activity in
other Ranks on the same channel. Power dissipated due te ReddNrites terminating
in the Rank in question is given by

ReadT erminate = pds_rd x %Cycles when datais being Read fromthis Rank

WriteT erminate = pds_wr x %Cycles when datais being Written tothis Rank

ReadT erminateOther = pds_termRoth x
%Cycles when data is being Read from other Ranks

WriteTerminateOther = pds_termW oth x
%Cycles when datais being Written to other Ranks

We use the same rank configuration as assumed in the Micrémibat Note [18], hence
we assume the same ODT power dissipation. The valuessofd, pds_wr, pds_termRoth,
pds_termW oth are taken from the Micron Technical Note [18].

Total Chip Power = ReadPower + WritePower + Activate Power +
BackGroundPower + RefreshPower + ReadT erminate Power +
WriteTerminate Power + ReadT erminateOther + WriteT erminateOther

The above DRAM chip power must be multiplied by the number BAM chips to obtain
total memory system power.
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System Power Model. When computing energy-delay-product (EDP), we must miyltip
system power with the square of system execution time. Fod-ahannel configuration,
we assume that our system incurs 40 W of constant power cagstfer processor uncore
components, I/O, disk, cooling, etc. Each core (includisgrivate LLC) incurs a power
overhead of 10 W while a thread is running and 0 W (perfect paa&ng) when a thread
has finished. The rest comes from the memory system, with etegleld estimation de-
scribed above. Our 1-channel configuration is supposedot@sent a quarter of a future
many-core processor where each channel on the procesgowihbe shared by many
simple cores. Consequently, our system power estimatethighconfiguration assumes
only 10 W for miscellaneous system power (a total 40 W thatvgldd by 4) and 5 W
peak power per core (since the core is simpler). Similar ¢odttthannel configuration, a
core is power-gated once a thread has finished executingthier system power model,
the memory system typically accounts for 15-35% of totatexyspower, consistent with
many reported server power breakdowns [7, 8, 15-17].

4 \Workloads and Simulator Execution

The USIMM simulator can take multiple workload traces asuingach workload trace
represents a different program running on a different cardy memory accesses filtered
through a 512 KB private LLC. The JWAC MSC will later constrand release a specific
set of workload traces, including commercial workload ésacthat will be used for the
competition. The initial USIMM distribution has a few shdraces from single-thread
executions of the PARSEC suite that can be used for testing.

The simulator is executed with multiple arguments. The rgument specifies the config-
uration file for the processor and memory system. The remgiaiguments each specify
an input trace file. As many cores are assumed as the numbepwf trace files. The
traces only contain the instruction types and memory addeeaccessed by a program, but
no timing information (the timing is estimated during themsiation). Based on the address
being touched by a memory instruction, the request is rotttdte appropriate memory
channel and memory controller.

Some of the traces are derived with publicly available beraks. These benchmarks are
executed with Windriver Simics [2] and its g-cache moduleroduce the trace. Some of

the traces are derived from commercial workloads. To kemplsition times manageable,

the traces released for the JWAC MSC will be for a few milliastructions, but represen-

tative of behavior for a longer execution.

Each thread’s trace is restricted to a 4 GB space. When rauttgces are fed to USIMM,

the address space grows and each trace is mapped to its owsga@d8within this address

space. This is implemented by adding bits to the trace agddoesresponding to the core

id). These additional bits are interpreted as part of the adaress bits. Thus, as more
13



cores are added, the DRAM chips are assumed to have largaeitiap.

Modeling a shared cache would require us to pre-determméhtieads that will share the
cache. We therefore assume that each thread’s trace isdilt@rough a private LLC. Since
each core and trace is how independent, we can construtiaayhinulti-core workloads

by feeding multiple traces to USIMM. When generating a triorea multi-threaded ap-

plication, we must confirm that a memory access is includedtiread’s trace only after
checking the private LLCs of other threads.

The JWAC MSC will focus on two main system configurations. Tin& uses a smaller
scale processor core and a single memory channel, whileettend uses a more aggres-
sive processor core and four memory channels. The two coafigns are summarized
in Table 4 below, with the differences in bold. While a singleannel appears under-
provisioned by today’s standards, it is more represemaiivthe small channel-to-core
ratio that is likely in future systems.

| Parameter | 1channel.cfg | 4channel.cfg |
Processor clock speed 3.2GHz 3.2GHz
Processor ROB size 128 160
Processor retire width 2 4
Processor fetch width 4 4
Processor pipeline depth 10 10
Memory bus speed 800 MHz (plus DDR) 800 MHz (plus DDR)
DDR3 Memory channels 1 4
Ranks per channel 2 2
Banks per rank 8 8
Rows per bank 32768x NUMCORES 32768x NUMCORES
Columns (cache lines) per row 128 128
Cache line size 64 B 64 B
Address bits (function of above params) 32+log(NUMCORES) 34+log(NUMCORES)
Write queue capacity 64 96
Address mapping row:rank:bank:chnl:col:blkoff row:col:rank:bank:chnl:blkoff
Write queue bypass latency 10 cpu cycles 10 cpu cycles

Table 4: System configurations used for the JWAC MSC.

The JWAC MSC has three competitive tracks: (1) Performaf®)ei.nergy-Delay Product
(EDP), and (3) Performance-Fairness Product (PFP). Thelaiar reports the delay to
finish each program, as well as the power consumed in eacHloatiie entire simulation.
To measure the quality of a scheduling algorithm, it is exeddor all workloads for both
system configurations. The metric for each track is compatedss all these simulations.

For the Performance track, delay for a scheduler is measisrdte sum of execution times
for all involved programs in all simulations.

EDP for a scheduler is measured as the sum of EDPs from eaciasion, where each
simulation’s EDP is measured by multiplying the system pdeethat simulation and the
14



square of delay to finish the last program in that workload.

For each multi-programmed experiment, we compute the sfamdor each program, rel-
ative to its single-thread execution; the fairness metictiiat experiment is the ratio of
the max slowdown to the min slowdown (a number typically w0 and 1, with 1 being
extremely fair). This corresponds to tBrictF metric described by Vandierendonck and
Seznec [32], and is not very throughput-aware. Our final PERiais therefore derived by
dividing the average fairness across all multi-programmerkloads by the sum of delays
of all involved programs.

The JWAC MSC will provide a spreadsheet with equations to pate all metrics, once
simulation outputs are entered.

5 Infrastructure Shortcomings

As with all simulators, USIMM incorporates a few approximat. We will attempt to fix
some of these shortcomings in future releases of the siorulat

e Trace-based simulators have the inherent shortcominghbataces are fixed and
not influenced by the timing computed during the simulatibnis is especially true
for multi-threaded simulations. In reality, a thread in altirtlhreaded execution may
spin for more or less time at a barrier depending on execulibenys in each thread;
however, in a trace-based simulation, the behavior of evacg is fixed and unaware
of when a barrier is actually fulfilled.

e Our current trace format does not capture register operamndsloes it capture data
dependences between instructions. We universally asswahalt workloads exhibit
a core IPC of 2.0 if they had a perfect last level cache. By ligngodata depen-
dences, we assume that all memory instructions within a R&itbé near-perfect
memory-level parallelism (MLP). This is clearly incorreehen (for example) han-
dling pointer-chasing codes that exhibit nearly zero MLP.

e We assume that each trace is independent and accesses a dli@8sapace. When
we execute a multi-programmed workload, we must ensureetheth application
maps to a different portion of the physical address spacés iShdone by adding
a few more bits to the address to identify the core. Thesedodsinterpreted as
part of the row address bits. This assumption has a few (psrhaintended) side-
effects. As more cores (and traces) are used in one simuyjdtie rows per bank
and hence DRAM chip capacity grows. Also, the trace for eackad of a multi-
threaded application are mapped to a different region, tvaungh they may refer to
the same set of addresses. For multi-threaded workloagsirttulator will therefore
under-estimate the row buffer hit rate.
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¢ Since the EDP metric only measures the time to finish the fagfram, a scheduling
policy that prioritizes the bottleneck program over theeomay appear better than
another scheduling policy that is more fair.

6 Summary

USIMM is a simulation infrastructure that models the memsygtem and interfaces it
with a trace-based processor model and a memory schedldjiogthm. This report sum-
marizes the state of the simulator as of February 2012. Wetplaontinue adding more
details to the simulator and fixing some of its short-comings

The most up-to-date weblink for obtaining the latest vergibthe simulator is:
htt p: // ut ahar ch. bl ogspot . conf’ 2012/ 02/ usi rm ht m

Users are welcome to post comments on the above web page.uéstians, email the
USIMM developers at usimm@cs.utah.edu. For code updatearmmouncements, please
subscribe to the usimm-users@cs.utah.edu mailing listdigng

http://mail man. cs. utah. edu/ mai | man/ | i sti nfo/usi nm users
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Appendices
A Changesin Version 1.1. — March 21st 2012

To switch from version 1.0 to version 1.1, download the newsio® and copy a previ-
ously written scheduler.c and scheduler.h to the src/ ttirgen the new version. USIMM
Version 1.1 incorporates the following changes (multipgevrieatures and one bug fix):

e The trace format has changed in two ways. Instead of reptiegezach non-memory
instruction with an “N” on a new line (version 1.0), each meynmstruction line
starts with a number that represents the number of precexdingnemory instruc-
tions (version 1.1). Also, each memory read instructioa Bnds with the PC of the
instruction that initiated the memory read.

e The instruction PC for a memory read is recorded in the ROR daucture and
the request queue data structure. The simulator does gottith this PC, but a
scheduler might potentially find it useful.

e The input/ directory includes billion instruction traces single-threaded executions
for five PARSEC v2.0 pre-compiled binaries. The traces rethe start of the
region of interest in each program. It takes tens of mindeshulate about a billion
cycles on modern machines. For short tests, users can senauaibset of the entire
trace. The “runsim” file has been updated to do an examplelationo with these
new traces.

e The main.c file has been updated to also accept traces for-tm@aded applica-
tions (a few multi-threaded applications will be includedthe final competition
workload). The individual traces of a multi-threaded aggtion must follow a spe-
cific naming convention (starting with “MTO0..”, “MT1..”, ahso on). Typically, the
addresses from each trace are given a unique prefix that esatodir core ID. When
a multi-threaded application is detected, the addresees éach of those trace files
are given a prefix that matches the core ID for thread 0. Inroiloeds, addresses
from each trace are given different prefixes, except when liedong to the same
multi-threaded application.

e The scheduler is now allowed to issue an auto-precharge emhin the same cy-
cle as a column-read or column-write. This allows the row ¢oclbsed without
consuming an additional command bus cycle. The scheduks this through the
is_autoprechargallowed( ) and issuautoprecharge( ) commands.

e The scheduler is allowed to activate an arbitrary row evehefe is no pending re-
guest in the queues for that row. This is done via the isstizatecommand( )
and isactivateallowed( ) commands. The number of such speculative amivais
tracked by statmum.activatespec. By default, we assume that all of these activa-
tions are done for future column-reads. This count is tleesfised to influence the
row buffer hit rates for memory reads.

e Bug fix: The function issugefreshcommand has been updated to correctly set the
nextcmd timing constraints based on current DRAM state. In thdiezacode,
the dramstate was being set to REFRESHING before the state-depeneeirtmd
times were being calculated. This change has a negligilpadton performance.
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B Changes in Version 1.2. — April 7th 2012

To switch from version 1.0 or 1.1 to version 1.2, download tiesv version and copy
a previously written scheduler.c and scheduler.h to thedsrectory in the new version.
In going from version 1.1 to version 1.2, only the code in filemorycontroller.c has
changed. We've also removed a few terms from the license i®ma&asier for groups to
use the simulator. USIMM Version 1.2 incorporates the fwiftg changes:

e Bug fix: The cleanmqueue function in the file memargontroller.c has been updated
to delete the read and write queue nodes after the corresgpreiuest has been
serviced. This fixes a memory leak in the simulator.

e Bug fix: The issuaequest function in the file memagontroller.c has been updated
to fix a bug in the calculation of the newtrite variable for all banks on the channel
after a read or write command is issued. In version 1.1, tlie wdte variable was
set to a larger value than what it ideally should have beere fidt effect of the
change is that now a write command following a read or writeng@and can be
issued earlier than in version 1.1.

e Bug fix: In the function updatenemory in the file memorgontroller.c, a condition
has been added to make sure that forced refreshes are red issie mandatory 8
(or more) refresh commands have already been issued inftesh@vindow.

e Bug fix: In the function issugpowerdowncommand, before issuing a powerdown-
slow command, the function isowerdownslow allowed is now being called cor-
rectly to check the issuability of the command. Earlierr¢hmight have been situa-
tions where a powerdowslow would be issued even if only a powerdown-fast was
allowed by the timing constraints (imposed solely by theag deadline).

e Bug fix: In the function issuautaprecharge in the memargontroller.c file, the
calculation of the commencement of the auto-precharge camdris now updated to
be the maximum of the nexire timing set by earlier commands and the first cycle
when a precharge can be issued following a read or write cardma

e Bug fix: Initialized the useptr field in the request structure to NULL when a new
read or write entry is enqueued in the corresponding quebées variable can now
be checked in the schedule function to determine if a readrite wode has been
recently enqueued; this allows the user to initialize otisar-defined variables soon
after a request is enqueued.
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C Changesin Version 1.3. — April 16th 2012

To switch from version 1.0 or 1.1 or 1.2 to version 1.3, dovad¢he new version and copy
a previously written scheduler.c and scheduler.h to thedémectory in the new version.

The version 1.3 distribution now also includes a subset ®efibrkloads that will be used
for the final competition. Here are the noteworthy pointsiatibe workloads:

e The following ten benchmark traces are included in the ithstion (13 files):

1. black: A single-thread run from PARSEC's blackscholes.

face: A single-thread run from PARSEC's facesim.

ferret: A single-thread run from PARSEC's ferret.

fluid: A single-thread run from PARSEC's fluidanimate.

freq: A single-thread run from PARSEC's fregmine.

stream:A single-thread run from PARSEC's streamcluster.
swapt: A single-thread run from PARSEC’s swaptions.

. comm1:A trace from a server-class transaction-processing watklo

© © N U A WN

. commz2:A trace from a server-class transaction-processing watklo
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. MT*-canneal: A four-thread run from PARSEC’s canneal, organized in four
files, MTO-canneal to MT3-canneal.

e Benchmarks black, face, ferret, freq, stream have aboutn®®n instructions.
These instructions were selected from 5 billion instruttiaces with a methodology
similar to that of Simpoirit

e Benchmarks fluid and swapt are also defined with the Simpi@tmethodology
described for the other PARSEC benchmarks. The only diifaes that the traces
include 750 million instructions so they have executione@similar to the other
benchmarks.

e Benchmarks comm1 and commz2 are roughly 500 million insimactvindows that
are representative of commercial transaction-processumgloads.

1SimPoint [28] is used to generate traces which are repratsemf the benchmarks. SimPoint uses
Basic Block Vectors(BBVs) [28] to recognise intervals oé thxecution which can be used to replicate the
behavior of the benchmark. It assigns weights to each iatemwhich can be applied to the results obtained
from each interval.

In our model, each benchmark is simulated for 5 billion imstions with interval sizes of 5 million in-
structions. A number of metrics are collected from eachriatie including number of LLC misses, number
of reads, number of writes, number of floating-point, integad branch instructions. The collection of these
metrics forms the BBV that is used with SimPoint. The BBVsdessified into 10 clusters using SimPoint.
The number of intervals selected from each cluster depemdissoweight of each cluster. The final trace of
500M instructions is the combination of 100 intervals, tak®m the large trace.
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e The 4-thread canneal traces represent the first 500 millistnuctions executed by
each thread once the region of interest is started. Whilefdhe other traces were
collected with 512 KB private LLCs for each single-threadgmam, the 4-thread
canneal traces assumed a 2 MB shared LLC for the four coregité w a trace file
represents the dirty block evicted by a block that is beinghfed by that thread.

e The 10 traces are used to form 10 different workloads thatoeilused for the com-
petition. All 10 workloads are run with 4channel.cfg, and finst 8 are also run with
1channel.cfg. The numbers from these 18 simulations willsed to compute the
metrics that must be reported in the papers being submitd#tetcompetition. The
runsim file in the usimm directory lists all 18 simulationshelcompetition web-
site will also have pointers to scripts, excel files, andXdaédle templates that can
be used to compute and report the final metrics. The final cttigperesults will
be based on these 18 experiments and a few more; the adtixperiments and
workloads will be announced after the submission deadlihe. 10 workloads are:

1. comm2

comml comml

comml comml comm2 comm?2

MTO-canneal MT1-canneal MT2-canneal MT3-canneal

fluid swapt comm2 comm?2

face face ferret ferret

black black freq freq

stream stream stream stream

© O N O R DN

fluid fluid swapt swapt comm2 comm2 ferret ferret
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. fluid fluid swapt swapt comm2 comm?2 ferret ferret blackklaeq freq comm1
comml stream stream

e The Fairness metric for the competition is being modifiededtie following. Fair-
ness is being defined as the maximum slowdown for any threaleirworkload,
relative to a single-program execution of that thread witf-&€FS scheduler (a high
number is bad). The final PFP metric will multiply thaverage of maximum slow-
downs across all experimentand the{sum of execution times of all programs in
those experimengs For the PFP metric, only 14 of the 18 experiments will be used
(the single-program comm2 workload and the multi-threagietheal workload will
not be used to evaluate fairness).
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In going from version 1.2 to version 1.3, the code in files mgmntroller.c, mem-
ory_controller.h and main.c have changed. USIMM Version 1.8iporates the following
changes over version 1.2:

e Bug fix: The isT_FAW_met is modified to correctly enforce thd=AW condition.
Earlier in a tFAW rolling window, it would be possible for the schedulerdwo-
neously issue a maximum of five activations, (assuming RBRD timing condition
was met). Now, the scheduler can issue a maximum of 4 activatenands in the
t_FAW window.

e Bug fix: Changed the variable cassuedcurrentcycle to keep track of COIRD or
COL_WR commands issued to each bank. Earlier, the variable aapy tkack of
whether a COLRD or COLWR had been issued in the current simulation cycle to
a channel before issuing an autoprecharge. Also, the Varisinow reset when an
autoprecharge command is issued. This has no impact orctamplementations
of the autoprecharge functionality. The change preveritsdders from incorrectly
issuing multiple auto-precharges to a channel in the sarle end also prevents an
autoprecharge to be sent to a bank that did not have a RDlor COLWR issued
to it that very cycle.

e Changes to statistics: New variables, st@@dsmerged and statwrites merged,
counting the number of merged reads and writes respectivalye been exposed to
the scheduler. The variables fetched and committed (whidpectively, contain
the fetched and committed instruction counts for each stedlcore) have been mi-
grated from the file main.c to memanpntroller.h to allow the scheduling algorithm
to use this information. The simulator also now prints the i execution times on
each core and the EDP metric for the simulation.
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